
Understanding	the	Limita/ons	of		
Exis/ng	Energy-Efficient	Design	Approaches		

for	Deep	Neural	Networks	

Contact	Info	
email:	sze@mit.edu	
website:	www.rle.mit.edu/eems	

Based	on	SysML	2018	paper	with	the	same	8tle:	Link	

Vivienne	Sze	
MassachuseEs	Ins/tute	of	Technology	

In	collabora*on	with	Yu-Hsin	Chen,	Joel	Emer,	Tien-Ju	Yang	

http://www.rle.mit.edu/eems/wp-content/uploads/2018/02/2018_SysML_final.pdf


Energy-Efficient	Processing	of	DNNs	2 

V.	Sze,	Y.-H.	Chen,		
T-J.	Yang,	J.	Emer,		

“Efficient	Processing	of	
Deep	Neural	Networks:		
A	Tutorial	and	Survey,”	
Proceedings	of	the	IEEE,	

Dec.	2017	

A	significant	amount	of	algorithm	and	hardware	research		
on	energy-efficient	processing	of	DNNs	

We	idenSfied	various	limitaSons	to	exisSng	approaches	

http://eyeriss.mit.edu/tutorial.html 



•  Popular	efficient	DNN	algorithm	approaches		

	

	

	

Design	of	Efficient	DNN	Algorithms	3 
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Compact	Network	Architectures	

Examples:	SqueezeNet,	MobileNet	

...	also	reduced	precision	

•  Focus	on	reducing	number	of	MACs	and	weights	
•  Does	it	translate	to	energy	savings?	



Data	Movement	is	Expensive	4 

Energy	of	weight	depends	on	memory	hierarchy	and	dataflow	

DRAM Global 
Buffer 

PE 

PE PE 

ALU fetch data to run  
a MAC here 

ALU 

Buffer ALU 

RF ALU 

Normalized Energy Cost* 

200× 

6× 

PE ALU 2× 

1× 
1× (Reference) 

DRAM ALU 

0.5 – 1.0 kB 

100 – 500 kB 

NoC: 200 – 1000 PEs 

* measured from a commercial 65nm process 



Energy-Evalua/on	Methodology	5 

DNN Shape Configuration 
(# of channels, # of filters, etc.) 

DNN Weights and Input Data 

  

[0.3, 0, -0.4, 0.7, 0, 0, 0.1, …] 

DNN Energy Consumption  
L1 L2 L3 

Energy 

… 

Memory 
Accesses 

Optimization 

# of MACs 
Calculation 

  

  

  
  

…
 

# acc. at mem. level 1 
# acc. at mem. level 2 

# acc. at mem. level n 

# of MACs 

Hardware Energy Costs of each 
MAC and Memory Access 

Ecomp 

Edata 

Energy estimation tool available at http://eyeriss.mit.edu    



Results for 
SqueezeNet1.0 for 

batch size 48 

Example:	AlexNet	vs.	SqueezeNet	6 
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Notes: ImageNet, Batch = 10/64, using active cooling [Movidius, Hot Chips 2016] 

SqueezeNet	AlexNet	

Power		
Efficiency		

(GFLOPS/W)	

Output	Feature	Map	
47%	

Input		
Feature	
Map	
23%	Weights	

21%	

Computa/on	
10%	

Energy Breakdown 
(SqueezeNet) 

Number of weights 
alone is not a good 
metric for energy 

All data types should 
be considered  



[Yang et al., CVPR 2017] 
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AlexNet	 SqueezeNet	
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Normalized	Energy	Consump/on	

Original	DNN	

Deeper	DNNs	with	fewer	weights	do	not	necessarily	consume	
less	energy	than	shallower	DNNs	with	more	weights	

Energy	Consump/on	of	Exis/ng	DNNs	
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AlexNet	 SqueezeNet	
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Original	DNN	 Magnitude-based	Pruning	[6]	[Han	et	al.,	NIPS	2015]	

Reduce	number	of	weights	by	removing	small	magnitude	weights	

Magnitude-based	Weight	Pruning	



[Yang et al., CVPR 2017] 
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Original	DNN	 Magnitude-based	Pruning	[6]	 Energy-aware	Pruning	(This	Work)	

Directly	target	energy	and	incorporate	it	into	the	op/miza/on	
of	DNNs	to	provide	greater	energy	savings	

Energy-Aware	Pruning	

1.74x 

1.6x 



NetAdapt:	Pla_orm-Aware	DNN	Adapta/on	10 

•  Automa/cally	adapt	DNN	to	a	mobile	plaiorm	to	reach	a	
target	latency	or	energy	budget	

•  Use	empirical	measurements	to	guide	opSmizaSon	(avoid	
modeling	of	tool	chain	or	plaiorm	architecture)		

[Yang et al., arXiv 2018] 

In collaboration with Google’s Mobile Vision Team 

NetAdapt Measure 

… 

Network	Proposals	

Empirical	Measurements	
Metric Proposal A … Proposal Z 

Latency 15.6 … 14.3 

Energy 41 … 46 

…
 

…
 

…
 

Pretrained	
Network	 Metric Budget 

Latency 3.8 

Energy 10.5 

Budget	

Adapted	
Network	

…
 

…
 

Plaiorm	

A	 B	 C	 D	 Z	



•  NetAdapt	boosts	the	real	inference	speed	of	MobileNet	
by	up	to	1.7x	with	higher	accuracy	

Improved	Latency	vs.	Accuracy	Tradeoff	11 

+0.3% accuracy 
1.7x faster 

+0.3% accuracy 
1.6x faster 

Reference: 
MobileNet: Howard et al, “Mobilenets: Efficient convolutional neural networks for mobile vision applications”, arXiv 2017 
MorphNet: Gordon et al., “Morphnet: Fast & simple resource-constrained structure learning of deep networks”, CVPR 2018 

*Tested on the ImageNet dataset and a Google Pixel 1 CPU 



Many	Efficient	DNN	Design	Approaches	12 
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Compact	Network	Architectures	

1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 

0 1 1 0 0 1 1 0 

Reduce	Precision	

32-bit float 

8-bit fixed 

Binary 0 

No	guarantee	that	DNN	algorithm	
designer	will	use	a	given	approach.	

Need	flexible	hardware!	



(MAC/cycle)

(MAC/data)

Step 1: maximum workload parallelism
Step 2: maximum dataflow parallelism

Step 3: # of act. PEs under a finite PE array size
Number of PEs

Step 4: # of act. PEs under fixed PE array dims.

peak
perf.

Step 5: # of act. PEs under fixed storage cap.

workload operational intensity

Step 6: lower act. PE utilization due to insuff. avg. BW
Step 7: lower act. PE utilization due to insuff. inst. BW

Slope = BW to only act. PE

Eyexam:	Understanding	Sources	of	
Inefficiencies	in	DNN	Accelerators	

13 

A	systemaSc	way	to	evaluate	how	each	architectural	decision	
affects	performance	(throughput)	for	a	given	DNN	workload	

Tightens the roofline model 

(Theoretical Peak Performance) 

[Chen et al., In Submission] 



•  Specialized	DNN	hardware	onen	rely	on	certain	properSes	of	
DNN	in	order	to	achieve	high	energy-efficiency	

•  Example:	Reduce	memory	access	by	amorSzing	across	MAC	array	
	

Exis/ng	DNN	Architectures	14 

MAC array Weight 
Memory 

Activation 
Memory 

Weight  
reuse 

Activation 
reuse 



•  Example:	reuse	depends	on	#	of	channels,	feature	map/batch	size		
–  Not	efficient	across	all	network	architectures	(e.g.,	compact	DNNs)	
–  Can	be	challenging	to	exploit	sparsity	

Limita/on	of	Exis/ng	DNN	Architectures	15 

MAC array 
(spatial 

accumulation) 

Number of filters 
(output channels) 

Number of 
 input channels 

MAC array 
(temporal 

accumulation) 

Number of filters 
(output channels) 

feature map 
or batch size 



•  Sparse	DNN	architectures	translate	sparsity	from	pruning	into	
improved	energy-efficiency	and	throughput	
–  Perform	only	non-zero	MACs	and	move	data	in	compressed	format	

•  ExisSng	sparse	DNN	architectures	opSmized	for	either	CONV	
or	FC	layer	due	to	different	BW	and	data	reuse	requirements		

•  Efficient	for	sparse	DNNs,	but	overhead	for	dense	DNNs	
–  Compressed	format	results	in	memory	overhead	for	dense	DNNs	
–  AddiSonal	control	to	idenSfy	locaSon	of	non-zero	values	results	in	
energy	overhead	for	dense	DNNs	

	

	

Exis/ng	Sparse	DNN	Architectures 		16 

Since	there	is	no	guarantee	in	degree	of	sparsity,		
it	is	important	to	evaluate	the	overhead	on	dense	DNNs	



To	efficiently	support:	

• Wide	range	of	filter	shapes		
–  Large	and	Compact	

•  Different	Layers		
–  e.g.,	CONV	and	FC	

• Wide	range	of	sparsity		
–  Dense	and	Sparse	

Goals	of	Eyeriss	v2	17 

On
-ch

ip 
Bu

ffe
r Spatial  

PE Array 

Eyeriss	(v1)	
[Chen	et	al.	ISSCC	2016,	ISCA	2016]	

http://eyeriss.mit.edu 



Example:	
–  Sparse	and	Dense	
–  Large	and	Compact	network	architectures		
–  Different	Layers	(e.g.,	CONV	and	FC)	
–  Variable	Bit-width	

	

Need	More	Comprehensive	Benchmarks	18 
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Compact	Network	Architecture	

Processors	should	support	a	diverse	set	of	DNNs		
that	uSlize	different	techniques	

1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 

0 1 1 0 0 1 1 0 

Reduce	Precision	

32-bit	float	

8-bit	fixed	

Binary	 0 



•  Flexible	dataflow	for	high	PE	array	uSlizaSon	and	data	reuse	
for	various	layer	shapes	and	sizes	

•  Flexible	NoC	that	can	operate	in	different	modes	for	different	
requirements	
–  USlizes	mulScast	to	exploit	spaSal	data	reuse	
–  USlizes	unicast	for	high	BW	for	weights	for	FC	and	weights	&	acSvaSons	
for	compact	network	architectures	

•  Processes	data	in	both	compressed	and	raw	format	to	
minimize	data	movement	for	both	CONV	and	FC	layers	
–  Exploit	sparsity	in	weights	and	acSvaSons	

Eyerissv2:	Balancing	Flexibility	and	Efficiency	19 



Benchmarking Metrics  
for DNN Hardware 

20 

How can we compare designs? 

V.	Sze,	Y.-H.	Chen,	T-J.	Yang,	J.	Emer,		
“Efficient	Processing	of	Deep	Neural	Networks:		A	Tutorial	and	Survey,”		

Proceedings	of	the	IEEE,	Dec.	2017	



•  Accuracy	
–  Quality	of	result	for	a	given	task	

•  Throughput	
–  AnalyScs	on	high	volume	data	
–  Real-Sme	performance	(e.g.,	video	at	30	fps)	

•  Latency	
–  For	interacSve	applicaSons	(e.g.,	autonomous	navigaSon)	

•  Energy	and	Power	
–  Edge	and	embedded	devices	have	limited	basery	capacity	
–  Data	centers	have	stringent	power	ceilings	due	to	cooling	costs	

•  Hardware	Cost		
–  $$$	

Metrics	for	DNN	Hardware	21 



•  Accuracy	
–  Difficulty	of	dataset	and/or	task	should	be	considered	

•  Throughput	
–  Number	of	cores	(include	uSlizaSon	along	with	peak	performance)	
–  RunSme	for	running	specific	DNN	models	

•  Latency	
–  Include	batch	size	used	in	evaluaSon	

•  Energy	and	Power	
–  Power	consumpSon	for	running	specific	DNN	models	
–  Include	external	memory	access	

•  Hardware	Cost		
–  On-chip	storage,	number	of	cores,	chip	area	+	process	technology	

Specifica/ons	to	Evaluate	Metrics	22 



Example:	Metrics	of	Eyeriss	Chip	23 

Metric Units Input 
Name of CNN Model Text AlexNet 
Top-5 error classification 
on ImageNet 

# 19.8 

Supported Layers All CONV 
Bits per weight # 16 
Bits per input activation # 16 
Batch Size # 4 
Runtime  ms 115.3 
Power mW 278 
Off-chip Access per 
Image Inference 

MBytes 3.85 

Number of Images 
Tested 

# 100 

ASIC Specs Input 
Process Technology 65nm LP 

TSMC (1.0V) 
Total Core Area 
(mm2) 

12.25 

Total On-Chip 
Memory (kB) 

192 

Number of Multipliers 168 

Clock Frequency 
(MHz) 

200 

Core area (mm2) /
multiplier 

0.073 

On-Chip memory 
(kB) / multiplier 

1.14 

Measured or 
Simulated 

Measured 



•  All	metrics	should	be	reported	for	fair	evaluaSon	of	design	
tradeoffs	

•  Examples	of	what	can	happen	if	certain	metric	is	omised:	
–  Without	the	accuracy	given	for	a	specific	dataset	and	task,	one	could	
run	a	simple	DNN	and	claim	low	power,	high	throughput,	and	low	cost	–	
however,	the	processor	might	not	be	usable	for	a	meaningful	task	

–  Without	repor/ng	the	off-chip	bandwidth,	one	could	build	a	processor	
with	only	mulSpliers	and	claim	low	cost,	high	throughput,	high	accuracy,	
and	low	chip	power	–	however,	when	evaluaSng	system	power,	the	off-
chip	memory	access	would	be	substanSal	

•  Are	results	measured	or	simulated?	On	what	test	data?	

Comprehensive	Coverage	24 



The	evaluaSon	process	for	whether	a	DNN	system	is	a	viable	
soluSon	for	a	given	applicaSon	might	go	as	follows:		

1.   Accuracy	determines	if	it	can	perform	the	given	task		

2.   Latency	and	throughput	determine	if	it	can	run	fast	enough	
and	in	real-Sme	

3.   Energy	and	power	consump/on	will	primarily	dictate	the	
form	factor	of	the	device	where	the	processing	can	operate		

4.   Cost,	which	is	primarily	dictated	by	the	chip	area,	determines	
how	much	one	would	pay	for	this	soluSon	

Evalua/on	Process	25 



•  The	number	of	weights	and	MACs	are	not	sufficient	for	evaluaSng	the	
energy	consumpSon	and	latency	of	DNNs	
–  Designers	of	efficient	DNN	algorithms	should	directly	target	direct	metrics	such	

as	energy	and	latency	and	incorporate	that	into	their	design			

•  Many	of	the	exisSng	DNN	processors	rely	on	certain	properSes	of	the	DNN	
which	cannot	be	guaranteed	as	the	wide	range	techniques	used	for	
efficient	DNN	algorithm	design	has	resulted	in	a	more	diverse	set	of	DNNs	
–  DNN	hardware	used	to	process	these	DNNs	should	be	sufficiently	flexible	to	

support	a	wide	range	of	techniques	efficiently	

•  DNN	hardware	should	be	evaluated	on	a	comprehensive	set	of	
benchmarks	and	metrics	

Summary		26 

For updates on Eyerissv2, Eyexam, NetAdapt, etc. 

or join EEMS news mailing list 

Project Website: http://eyeriss.mit.edu   
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