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Energy-Efficient Processing of DNNs
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We identified various limitations to existing approaches
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Design of Efficient DNN Algorithms

* Popular efficient DNN algorithm approaches

Network Pruning Compact Network Architectures

before pruning after pruning
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Examples: SqueezeNet, MobileNet

... also reduced precision
* Focus on reducing number of MACs and weights

* Does it translate to energy savings?

-
RESEARCH LABORATORY |\n o000
II I II OF ELECTRONICS AT MIT micro]y-s%ms technology laboratories
institute of

vvvvv




Data Movement is Expensive
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* measured from a commercial 65nm process

Energy of weight depends on memory hierarchy and dataflow




Energy-Evaluation Methodology
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DNN Shape Configuration
(# of channels, # of filters, etc.)

Hardware Energy Costs of each
MAC and Memory Access

# acc. at mem. level 1

Memory # acc. at mem. level 2

Accesses

DNN Weights and Input Data

Optimization # acc. at mém. level n E gata
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Calculation
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DNN Energy Consumption

Mir Energy estimation tool available at http://everiss.mit.edu T Imvnx-Lm..".'




Bl Example: AlexNet vs. SqueezeNet
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Notes: ImageNet, Jfhtch = 10/64, using active cooling [MOVldlus, HOt ChlpS 201 6]

Sq u eeze N et RESEARCH LABORATORY MTLeoo

OF ELECTRONICS AT MIT microsystems technology laboratories
AAAAA institute of




Energy Consumption of Existing DNNs
%
zi% ResNet-50@

VGG-16
89%
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® GoogleNet

Top-5 Accuracy

81% AlexNet@ @SqueezeNet
79%

77%
5E+08 5E+09 5E+10
Normalized Energy Consumption

® Original DNN

Deeper DNNs with fewer weights do not necessarily consume
less energy than shallower DNNs with more weights

i [Yang et al., CVPR 2017] o MIL®eS .
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Bl Magnitude-based Weight Pruning

93%
91% ResNet-50 @

VGG-16
89%

87%
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® Original DNN A Magnitude-based Pruning [Han et al., NIPS 2015]

Reduce number of weights by removing small magnitude weights
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Bl Energy-Aware Pruning

Top-5 Accuracy

93%

9 ResNet-50 @
e 1.6x VGG-16
89% "~ ® GoogleNet ®
87% GoogleNet m
85%
83% S Net

E1.74x queezeNe
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0 i AlexNet@ @SqueezeNet
799% AlexNet®  alexNet SqueezeNet
77%
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Normalized Energy Consumption

® Original DNN 4 Magnitude-based Pruning ~ ® Energy-aware Pruning (This Work)

Directly target energy and incorporate it into the optimization
of DNNSs to provide greater energy savings

[Yang et al., CVPR 2017] o MTL®®S e
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NetAdapt: Platform-Aware DNN Adaptation

 Automatically adapt DNN to a mobile platform to reach a
target latency or energy budget

* Use empirical measurements to guide optimization (avoid
modeling of tool chain or platform architecture)

Pretrained Budget

Platform
Network

: Empirical Measurements
Metric Budget

Metric Proposal A Proposal Z 040

Latency 3.8

Latency 15.6 14.3 ﬂ

Energy 10.5 - ] :
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[Yang et al., arXiv 2018]
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Improved Latency vs. Accuracy Tradeoff

* NetAdapt boosts the real inference speed of MobileNet
by up to 1.7x with higher accuracy

59%
57% 1 Y A
55% - °
53% A o— —A ® NetAdapt (This Work)

+0.3% accurac
51% - o o) AMobileNet Family

49% - '. A ¢ MorphNet

o
o/
47% o— o
45% - ® Ai03% accuracy
43% 4 @ 1.6x faster

Top-1 Accuracy

41% 1 I I 1 I
3 S} 7 9 11 13

Latency (ms)
*Tested on the ImageNet dataset and a Google Pixel 1 CPU

Reference:
MobileNet: Howard et al, “Mobilenets: Efficient convolutional neural networks for mobile vision applications”, arXiv 2017
MorphNet: Gordon et al., “Morphnet: Fast & simple resource-constrained structure learning of deep networks”, CVPR 2018
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Many Efficient DNN Design Approaches

Network Pruning

after pruning

Reduce Precision

Compact Network Architectures

R 01001011000000d001 010000000

8-bit fixed [JFIHELHHE

Binary E

No guarantee that DNN algorithm
designer will use a given approach.
Need flexible hardware!
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Eyexam: Understanding Sources of
Inefficiencies in DNN Accelerators

A systematic way to evaluate how each architectural decision
affects performance (throughput) for a given DNN workload

Tightens the roofline model

(MA(i/cycIe) Slope = BW to only act. PE
...................................................... N Step 1: maximum Workload para"elism

....................................................... — Step 2: maximum dataﬂow para”elism
e —> Number of PEs (Theoretical Peak Performance)

..................................................... — Step 3: # of act. PEs under a finite PE array size
..................................................... S Step 4: # of act. PEs under fixed PE array dims.
---------------------------- —> Step 5: # of act. PEs under fixed storage cap.

PFevecemmsenmssenes s — Step 6: lower act. PE utilization due to insuff. avg. BW
B ccccsssssssss —> Step 7: lower act. PE utilization due to insuff. inst. BW

> (MAC/data)

peak
perf.

workload operational intensity

i [Chen et al., In Submission] srengiEe MRS v




Existing DNN Architectures

* Specialized DNN hardware often rely on certain properties of
DNN in order to achieve high energy-efficiency

* Example: Reduce memory access by amortizing across MAC array

Activation
Memory
> Weight
reuse
MAC array
Activation
Y reuse
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Limitation of Existing DNN Architectures

* Example: reuse depends on # of channels, feature map/batch size
— Not efficient across all network architectures (e.g., compact DNNs)

— Can be challenging to exploit sparsity

Number of feature map
input channels or batch size
< > < >
Number of filters MAC array Number of filters MAC array
(output channels) (spatial (output channels) (temporal
1 <accumulatlon)> 1 accumulation)
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Existing Sparse DNN Architectures

* Sparse DNN architectures translate sparsity from pruning into
improved energy-efficiency and throughput

— Perform only non-zero MACs and move data in compressed format

» Existing sparse DNN architectures optimized for either CONV
or FC layer due to different BW and data reuse requirements

* Efficient for sparse DNNs, but overhead for dense DNNs
— Compressed format results in memory overhead for dense DNNs

— Additional control to identify location of non-zero values results in
energy overhead for dense DNNs

Since there is no guarantee in degree of sparsity,
it is important to evaluate the overhead on dense DNNs
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Goals of Eyeriss v2

To efficiently support:
* Wide range of filter shapes

— Large and Compact

* Different Layers
— e.g., CONV and FC

* Wide range of sparsity

— Dense and Sparse

Eyeriss (v1)
[Chen et al. ISSCC 2016, ISCA 2016]

http://eyeriss.mit.edu
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Need More Comprehensive Benchmarks

Processors should support a diverse set of DNNs
that utilize different techniques

Example: Network Pruning
— Sparse and Dense

— Large and Compact network architectures
— Different Layers (e.g., CONV and FC)

— Variable Bit-width

before pruning after pruning
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Eyerissv2: Balancing Flexibility and Efficiency

* Flexible dataflow for high PE array utilization and data reuse
for various layer shapes and sizes

* Flexible NoC that can operate in different modes for different
requirements
— Utilizes multicast to exploit spatial data reuse
— Utilizes unicast for high BW for weights for FC and weights & activations
for compact network architectures

* Processes data in both compressed and raw format to
minimize data movement for both CONV and FC layers

— Exploit sparsity in weights and activations
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Benchmarking Metrics

for DNN Hardware

How can we compare designs?

V. Sze, Y.-H. Chen, T-J. Yang, J. Emer,

“Efficient Processing of Deep Neural Networks: A Tutorial and Survey,”

Proceedings of the IEEE, Dec. 2017
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Metrics for DNN Hardware

Accuracy

— Quality of result for a given task

Throughput
— Analytics on high volume data

— Real-time performance (e.g., video at 30 fps)

Latency

— For interactive applications (e.g., autonomous navigation)

Energy and Power
— Edge and embedded devices have limited battery capacity

— Data centers have stringent power ceilings due to cooling costs

Hardware Cost

— 555
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Specifications to Evaluate Metrics

Accuracy
— Difficulty of dataset and/or task should be considered

Throughput
— Number of cores (include utilization along with peak performance)

— Runtime for running specific DNN models

Latency

— Include batch size used in evaluation

Energy and Power
— Power consumption for running specific DNN models

— Include external memory access

Hardware Cost

— On-chip storage, number of cores, chip area + process technology
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Example: Metrics of Eyeriss Chip

Process Technology @ 65nm LP

TSMC (1.0V) Name of CNN Model Text AlexNet
Total Core Area 1225 Top-5 error classification  # 19.8
(mm2) on ImageNet
Total On-ChIp 192 Supported LayerS All CONV
Memory (kB) Bits per weight # 16
Number of Multipliers 168 Bits per input activation # 16
Clock Frequency 200 Batch Size ## 4
(MHz) Runtime ms 115.3
Core area (mm?2) / 0.073 Power mW 278
RIIRIC] Off-chip Access per MBytes 3.85
On-Chip memory 1.14 Image Inference
W=D L2l Number of Images # 100
Measured or Measured Tested
Simulated
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Comprehensive Coverage

e All metrics should be reported for fair evaluation of design
tradeoffs

* Examples of what can happen if certain metric is omitted:

— Without the accuracy given for a specific dataset and task, one could
run a simple DNN and claim low power, high throughput, and low cost —
however, the processor might not be usable for a meaningful task

— Without reporting the off-chip bandwidth, one could build a processor
with only multipliers and claim low cost, high throughput, high accuracy,
and low chip power — however, when evaluating system power, the off-
chip memory access would be substantial

e Are results measured or simulated? On what test data?
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Evaluation Process

The evaluation process for whether a DNN system is a viable
solution for a given application might go as follows:

1. Accuracy determines if it can perform the given task

2. Latency and throughput determine if it can run fast enough
and in real-time

3. Energy and power consumption will primarily dictate the
form factor of the device where the processing can operate

4. Cost, which is primarily dictated by the chip area, determines
how much one would pay for this solution

R B RESEARCH LABORATORY
M PAla) RoscarchLasoratoRy MTL eee

logy laboratories

institute of



Summary

* The number of weights and MACs are not sufficient for evaluating the
energy consumption and latency of DNNs

— Designers of efficient DNN algorithms should directly target direct metrics such
as energy and latency and incorporate that into their design

* Many of the existing DNN processors rely on certain properties of the DNN
which cannot be guaranteed as the wide range techniques used for
efficient DNN algorithm design has resulted in a more diverse set of DNNs

— DNN hardware used to process these DNNs should be sufficiently flexible to
support a wide range of techniques efficiently

* DNN hardware should be evaluated on a comprehensive set of
benchmarks and metrics

For updates on Eyerissv2, Eyexam, NetAdapt, etc.

¥ Follow @eems_mit or join EEMS news mailing list

T Project Website: http://eyeriss.mit.edu [lE e MILO®S ..
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