Efficient Edge Solutions for Deep Learning Applications

Vivienne Sze

Massachusetts Institute of Technology

In collaboration with Yu-Hsin Chen, Joel Emer, Tien-Ju Yang

Contact Info email: <u>sze@mit.edu</u> website: <u>www.rle.mit.edu/eems</u>

February, 2018

Example Applications of Deep Learning

Computer Vision

Speech Recognition

Medical

February, 2018

Processing at "Edge" instead of the "Cloud"

ISSCC Short Course

Typical Constraints on Edge Processing

- Use Video Compression as a baseline
- Area cost
 - Memory Size 100-500kB
- Power budget
 - < 1W for smartphones</p>
- Throughput
 - Real-time 30 fps
- Energy
 - ~1nJ/pixel

......................

3.3 mm

176 I/O PADS

DOMAIN

3.3 mm

February, 2018

Deep Convolutional Neural Networks

Deep Convolutional Neural Networks

Deep Convolutional Neural Networks

Convolutions account for more than 90% of overall computation, dominating **runtime** and **energy consumption**

a plane of input activations a.k.a. **input feature map (fmap)**

Many Input Channels (C)

Large Sizes with Varying Shapes

AlexNet Convolutional Layer Configurations

Layer	Filter Size (R)	# Filters (M)	# Channels (C)	Stride
1	11x11	96	3	4
2	5x5	256	48	1
3	3x3	384	256	1
4	3x3	384	192	1
5	3x3	256	192	1

Layer 1

34k Params 105M MACs Layer 2

[Krizhevsky, NIPS 2012]

307k Params 224M MACs 885k Params 150M MACs

Popular DNNs

- LeNet (1998)
- AlexNet (2012)
- OverFeat (2013)
- VGGNet (2014)
- GoogleNet (2014)
- ResNet (2015)

Summary of Popular DNNs

Metrics	LeNet-5	AlexNet	VGG-16	GoogLeNet (v1)	ResNet-50
Top-5 error	n/a	16.4	7.4	6.7	5.3
Input Size	28x28	227x227	224x224	224x224	224x224
# of CONV Layers	2	5	16	21 (depth)	49
# of Weights	2.6k	2.3M	14.7M	6.0M	23.5M
# of MACs	283k	666M	15.3G	1.43G	3.86G
# of FC layers	2	3	3	1	1
# of Weights	58k	58.6M	124M	1M	2M
# of MACs	58k	58.6M	124M	1M	2M
Total Weights	60k	61M	138M	7M	25.5M
Total MACs	341k	724M	15.5G	1.43G	3.9G
ſ	CONV L	nportant!			

Complexity versus Difficulty of Task

- Evaluate hardware using the appropriate DNN model and dataset
 - Difficult tasks typically require larger models
 - Different datasets for different tasks

ImageNet

Training vs. Inference

Challenges

Key Metrics

- Accuracy
 - Well defined dataset, DNN Model and task
- Programmability
 - Support various DNN Models with different filter weights
- Energy/Power:
 - Energy per operation and DRAM Bandwidth
- Throughput/Latency
 - GOPS, frame rate, delay, batch size
- Cost
 - Area (memory and logic size)

Opportunities in Architecture

- Operations exhibit high parallelism
 - → high throughput possible

- Operations exhibit high parallelism
 → high throughput possible
- Memory Access is the Bottleneck

* multiply-and-accumulate

- Operations exhibit high parallelism
 → high throughput possible
- Memory Access is the Bottleneck

→ 2896M DRAM accesses required

- Operations exhibit high parallelism
 → high throughput possible
 - Images Input data reuse opportunities (up to 500x) → exploit **low-cost memory Filters** Image Image Filter Filter Convolutional **Filter** Image Reuse Reuse Reuse (pixels, weights) (pixels) (weights)

Highly-Parallel Compute Paradigms

Temporal Architecture (SIMD/SIMT)

Spatial Architecture (Dataflow Processing)

Advantages of Spatial Architecture

Temporal Architecture (SIMD/SIMT) **Spatial Architecture** (Dataflow Processing)

How to Map the Dataflow?

Spatial Architecture (Dataflow Processing)

CNN Convolution pixels weights partial sums

Goal: Increase reuse of input data (weights and pixels) and local partial sums accumulation

Energy-Efficient Dataflow

[Chen et al., ISCA 2016]

Data Movement is Expensive

* measured from a commercial 65nm process

ISSCC Short Course

Weight Stationary (WS)

- Minimize weight read energy consumption
 - maximize convolutional and filter reuse of weights
- Examples:

[Chakradhar, *ISCA* 2010] [nn-X (NeuFlow), *CVPRW* 2014] [Park, *ISSCC* 2015] [Origami, *GLSVLSI* 2015]

WS Example: nn-X (NeuFlow)

Output Stationary (OS)

- Minimize partial sum R/W energy consumption
 - maximize local accumulation
- Examples:

[**Gupta**, *ICML* 2015] [**Peemen**, *ICCD* 2013]

[ShiDianNao, ISCA 2015]

OS Example: ShiDianNao

Top-Level Architecture

PE Architecture

[Du et al., ISCA 2015]

psums

No Local Reuse (NLR)

- Use a large global buffer as shared storage
 - Reduce **DRAM** access energy consumption
- Examples:

[DianNao, ASPLOS 2014] [DaDianNao, MICRO 2014] [Zhang, FPGA 2015]
NLR Example: UCLA

ISSCC Short Course

[Zhang et al., FPGA 2015]

Taxonomy: More Examples

• Weight Stationary (WS)

[Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014] [Park, ISSCC 2015] [ISAAC, ISCA 2016] [PRIME, ISCA 2016]

• Output Stationary (OS)

[Peemen, ICCD 2013] [ShiDianNao, ISCA 2015] [Gupta, ICML 2015] [Moons, VLSI 2016] [Thinker, VLSI 2017]

• No Local Reuse (NLR)

[**DianNao**, *ASPLOS* 2014] [**DaDianNao**, *MICRO* 2014] [**Zhang**, *FPGA* 2015] [**TPU**, *ISCA* 2017]

Row Stationary: Energy-efficient Dataflow

- Maximize row convolutional reuse in RF
 - Keep a filter row and image sliding window in RF
- Maximize row psum accumulation in RF

Convolutional Reuse Maximized

Filter rows are reused across PEs horizontally

Convolutional Reuse Maximized

Image rows are reused across PEs **diagonally**

Maximize 2D Accumulation in PE Array

Partial sums accumulate across PEs vertically

CNN Convolution – The Full Picture

Map rows from **multiple images, filters** and **channels** to same PE to exploit other forms of reuse and local accumulation

Evaluate Reuse in Different Dataflows

• Weight Stationary

 Minimize movement of filter weights

• Output Stationary

 Minimize movement of partial sums

No Local Reuse

Don't use any local PE storage.
 Maximize global buffer size.

• Row Stationary

Evaluate Reuse in Different Dataflows

• Weight Stationary

- Minimize movement of filter weights
- Output Stationary
 - Minimize movement of partial sums
- No Local Reuse
 - Don't use any local PE storage.
 Maximize global buffer size.
- Row Stationary

Evaluation Setup

- Same Total Area
- AlexNet
- 256 PEs
- Batch size = 16

Dataflow Comparison: CONV Layers

Dataflow Comparison: CONV Layers

Dataflow Comparison: FC Layers

Row Stationary: Layer Breakdown

Hardware for Row Stationary Dataflow

[Chen et al., ISSCC 2016]

Eyeriss Deep CNN Accelerator

Data Delivery with On-Chip Network

Link Clock Core Clock

DCNN Accelerator

Logical to Physical Mappings

Logical to Physical Mappings

Data Delivery with On-Chip Network

Compared to Broadcast, **Multicast** saves >80% of NoC energy

Eyeriss Chip Spec & Measurement Results

Technology	TSMC 65nm LP 1P9M	
On-Chip Buffer	108 KB	
# of PEs	168	
Scratch Pad / PE	0.5 KB	
Core Frequency	100 – 250 MHz	
Peak Performance	33.6 – 84.0 GOPS	
Word Bit-width	16-bit Fixed-Point	
	Filter Width: 1 – 32	
	Filter Height: 1 – 12	
Natively Supported	Num. Filters: 1 – 1024	
CNN Shapes	Num. Channels: 1 – 1024	
	Horz. Stride: 1–12	
	Vert. Stride: 1, 2, 4	

AlexNet: For 2.66 GMACs [8 billion 16-bit inputs (**16GB**) and 2.7 billion outputs (**5.4GB**)], only requires **208.5MB** (buffer) and **15.4MB** (DRAM)

Summary of DNN Dataflows

- Weight Stationary
 - Minimize movement of filter weights
 - Popular with processing-in-memory architectures
- Output Stationary
 - Minimize movement of partial sums
 - Different variants optimized for CONV or FC layers
- No Local Reuse
 - No PE local storage \rightarrow maximize global buffer size

• Row Stationary

- Adapt to the NN shape and hardware constraints
- Optimized for overall system energy efficiency

Understanding the Energy Gap with Hand-Crafted Features

[Suleiman et al., ISCAS 2016]

Hand-Crafted vs. Learned Features

Hand-Crafted Features (HOG)

HOG = Histogram of Oriented Gradients

Compare HOG and CNN

Compare using measured results from test chips (65 nm)

Features: Energy vs. Accuracy

February, 2018

ISSCC Short Course

HOG vs. CNN: Hardware Cost

	HOG [VLSI 2016]	CNN [ISSCC 2016]
Technology	TSMC LP 65nm	TSMC LP 65m
Gate Count (kgates)	893	1176
Memory (kB)	159	181.5

Similar Hardware Cost (comparable with Video Compression)
HOG vs. CNN: Throughput

	HOG	CNN (AlexNet)	CNN (VGG-16)		
Throughput (Mpixels/s)	62.5	1.8	0.04		
GOP/Mpixel	0.7	25.8	610.3		
Throughput (GOPS)	46.0	46.2	21.4		
Throughput gap explained by GOP/Mpixel gap					

HOG vs. CNN: Energy and DRAM Access

	Additional and the second s	 → 4000 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓) μ m \rightarrow patial Array (68 PEs) 4000 μ m \downarrow	
	HOG	CNN (AlexNet)	CNN (VGG-16)	
Energy (nJ/pixel)	0.5	155.5	6742.9	
GOP/Mpixel	0.7	25.8	610.3	
Energy (GOPS/W)	1570	166.2	90.7	
DRAM (B/pixel)	1.0	74.7	2128.6	

Energy gap larger than GOPS/W gap

Energy Gap between CNN and HOG

- CNNs require more operations per pixel
 - AlexNet vs. HOG = 37x
 - VGG-16 vs. HOG = 872x
- CNN requires a programmable architecture
 - Example: AlexNet CONV layers have 2.3M weights (assume 8-bits per weight); Area budget of HOG chip is ~1000 kgates, 150kB
 - <u>Design A:</u> Hard-wired weights
 - Only have 10k multipliers with fixed weights (>100x increase in area)
 - <u>Design B</u>: Store all weights on-chip
 - Only store 150k weights on chip (>10x increase in storage)
 - Support different shapes per layer and different weights

Opportunities in Joint Algorithm Hardware Design

Approaches

- <u>Reduce size</u> of operands for storage/compute
 - Floating point \rightarrow Fixed point
 - Bit-width reduction
 - Non-linear quantization
- <u>Reduce number</u> of operations for storage/compute
 - Exploit Activation Statistics (Compression)
 - Network Pruning
 - Compact Network Architectures

Commercial Products using 8-bit Integer

Nvidia's Pascal (2016)

Google's TPU (2016)

Reduced Precision in Research

- Reduce number of bits
 - Binary Nets [Courbariaux, NIPS 2015]
- Reduce number of unique weights
 - Ternary Weight Nets [Li, arXiv 2016]
 - XNOR-Net [Rategari, ECCV 2016]
- Non-Linear Quantization
 - LogNet [Lee, ICASSP 2017]

Approaches

- <u>Reduce size</u> of operands for storage/compute
 - Floating point \rightarrow Fixed point
 - Bit-width reduction
 - Non-linear quantization
- <u>Reduce number</u> of operations for storage/compute
 - Exploit Activation Statistics (Compression)
 - Network Pruning
 - Compact Network Architectures

Sparsity in Data

I/O Compression in Eyeriss

Compression Reduces DRAM BW

Simple RLC within 5% - 10% of theoretical entropy limit

[Chen et al., ISSCC 2016]

Data Gating / Zero Skipping in Eyeriss

Cnvlutin

- Process Convolution Layers
- Built on top of DaDianNao (4.49% area overhead)
- Speed up of 1.37x (1.52x with activation pruning)

Pruning Activations

Remove small activation values

Speed up 11% (ImageNet)

Reduce power 2x (MNIST)

February, 2018

[Albericio et al., ISCA 2016] ISSCC Short Course

[Reagen et al., ISCA 2016] ^{86 of 105}

Pruning – Make Weights Sparse

Optimal Brain Damage

- 1. Choose a reasonable network architecture
- 2. Train network until reasonable solution obtained
- 3. Compute the second derivative for each weight
- 4. Compute saliencies (i.e. impact on training error) for each weight
- 5. Sort weights by saliency and delete low-saliency weights
- 6. Iterate to step 2

Pruning – Make Weights Sparse

Prune based on magnitude of weights

Example: AlexNet **Weight Reduction:** CONV layers 2.7x, FC layers 9.9x (Most reduction on fully connected layers) **Overall:** 9x weight reduction, 3x MAC reduction

[Han et al., NIPS 2015]

Compression of Weights & Activations

- Compress weights and activations between DRAM and accelerator
- Variable Length / Huffman Coding

Example: Value: 16'b0 \rightarrow Compressed Code: {1'b0} Value: 16'bx \rightarrow Compressed Code: {1'b1, 16'bx}

• Tested on AlexNet \rightarrow 2× overall BW Reduction

Layer	Filter / Image bits (0%)	Filter / Image BW Reduc.	IO / HuffIO (MB/frame)	Voltage (V)	MMACs/ Frame	Power (mW)	Real (TOPS/W)	
General CNN	16 (0%) / 16 (0%)	1.0x		1.1	—	288	0.3	_
AlexNet 11	7 (21%) / 4 (29%)	1.17x / 1.3x	1 / 0.77	0.85	105	85	0.96	-
AlexNet 12	7 (19%) / 7 (89%)	1.15x / 5.8x	3.2 / 1.1	0.9	224	55	1.4	
AlexNet 13	8 (11%) / 9 (82%)	1.05x / 4.1x	6.5 / 2.8	0.92	150	77	0.7	
AlexNet 14	9 (04%) / 8 (72%)	1.00x / 2.9x	5.4 / 3.2	0.92	112	95	0.56	
AlexNet 15	9 (04%) / 8 (72%)	1.00x / 2.9x	3.7 / 2.1	0.92	75	95	0.56	
Total / avg.	_	_	19.8 / 10	_	_	76	0.94	$[M_{00000} \text{ ot ol}] \setminus [S] 2016$
LeNet-5 11	3 (35%) / 1 (87%)	1.40x / 5.2x	0.003 / 0.001	0.7	0.3	25	1.07	
LeNet-5 12	4 (26%) / 6 (55%)	1.25x / 1.9x	0.050 / 0.042	0.8	1.6	35	1.75	Han at al ICI R 20161
Total / avg.	—	_	0.053 / 0.043	_	_	33	1.6	- TIATI EL AL, ICLIN 2010]

Key Metrics for Embedded DNN

- Accuracy \rightarrow Measured on Dataset
- Storage Footprint \rightarrow Number of Weights
- Speed \rightarrow Number of MACs
- Energy \rightarrow ?

Energy-Evaluation Methodology

Energy Estimation Tool

Website: https://energyestimation.mit.edu/

Deep Neural Network Energy Estimation Tool

Overview

This Deep Neural Network Energy Estimation Tool is used for evaluating and designing energy-efficient deep neural networks that are critical for embedded deep learning processing. Energy estimation was used in the development of the energy-aware pruning method (Yang et al., CVPR 2017), which reduced the energy consumption of AlexNet and GoogLeNet by 3.7x and 1.6x, respectively, with less than 1% top-5 accuracy loss. This website provides a simplified version of the energy estimation tool for shorter runtime (around 10 seconds).

Input

To support the variety of toolboxes, this tool takes a single network configuration file. The network configuration file is a txt file, where each line denotes the configuration of a CONV/FC layer. The format of each line is:

height nCha	У	bottom rig	ght			
width r	MapsOrFilts bitwidt	th		↓ ×	top left	l
2,27,27,96	, 44 , 3.5731e+05 , 16 ,	, 5 , 5 , 48 , 256 , 0 , 16 ,	27 , 27 , 256 , 44 , 6.623e+06 , 16	;, i , i , 1	, 2, 2, 2, 2, 2	ž
Layer_Index C	onf_IfMap	Conf_Filt	Conf_OfMap	Stride	Padding	

- Layer Index: the index of the layer, from 1 to the number of layers. It should be the same as the line number.
- <u>Conf_IfMap, Conf_Filt, Conf_OfMap</u>: the configuration of the input feature maps, the filters and the output feature maps. The configuration of each of the three data types is in the format of "height width number_of_channels number_of_maps_or_filts number_of_zero_entries bitwidth_in_bits".
- Stride: the stride of this layer. It is in the format of "stride_y stride_x".
- Pad: the amount of input padding. It is in the format of "pad_top pad_bottom pad_left pad_right".

Therefore, there will be 25 entries separated by commas in each line.

Running the Estimation Model

After creating your text file, follow these steps to upload your text file and run the estimation model:

- 1. Check the "I am not a robot" checkbox and complete the Google reCAPTCHA challenge. Help us prevent spam.
- 2. Click the "Choose File" button below to choose your text file from your computer.
- 3. Click the "Run Estimation Model" button below to upload your text file and run the estimation model.

Input DNN Configuration File

Layer_Index, Input_Feature_Map, Output_Feature_Map, Weight, Computation 1,161226686.785535,323273662,88858340.625,58290651 2,63540403.7543396,19104256.6840292,4770357.50868125,3263307.50868125 3,26787638.0555562,39583335.5555542,3272222.77777708,2285942.77777708 4,26018817.2746958,48841502.8019458,15927826.1926396,7847418.06763958 5,62285050.8236438,49433953.294575,4188476.6472875,3227376.6472875

- 6,27267689.7685187,45381705.7407417,3740581.20370417,2666586.20370417
- 7,26787131.0480146,48586492.3413917,16216779.2956958,8136371.17069583

Output DNN energy breakdown across layers

[Yang et al., CVPR 2017]

Key Observations

- Number of weights *alone* is not a good metric for energy
- All data types should be considered

Energy Consumption of Existing DNNs

Magnitude-based Weight Pruning

Energy-Aware Pruning

Network Architecture Design

Bottleneck in Popular DNN models

Reduce size and computation with 1x1 Filter (bottleneck)

SqueezeNet

SqueezeNet

Deeper CNNs with fewer weights do not necessarily consume less energy than shallower CNNs with more weights

Measured with energy estimation tool: <u>http://energyestimation.mit.edu</u>

Opportunities in Advanced Technologies

Advanced Memory Technologies

Many new memories and devices explored to reduce data movement

Stacked DRAM

[Gao et al., Tetris, ASPLOS 2017] [Kim et al., NeuroCube, ISCA 2016]

eDRAM [Chen et al., DaDianNao, MICRO 2014]

Summary

- DNNs are a critical component in the AI revolution, delivering record breaking accuracy on many important AI tasks for a wide range of applications; however, it comes at the cost of high computational complexity
- Efficient processing of DNNs is an important area of research with many promising opportunities for innovation at various levels of hardware design, including algorithm co-design
- When considering different DNN solutions it is important to evaluate with the appropriate workload in term of both input and model, and recognize that they are evolving rapidly.
- It's important to consider a **comprehensive set of metrics** when evaluating different DNN solutions: **accuracy, speed, energy, and cost**

References

Overview Paper

V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, *"Efficient Processing of Deep Neural Networks: A Tutorial and Survey,"* Proceedings of the IEEE, December 2017 https://arxiv.org/pdf/1703.09039.pdf

More info about **Eyeriss** and **Tutorial on DNN Architectures** at <u>http://eyeriss.mit.edu</u>

MIT Professional Education Course on **"Designing Efficient Deep Learning Systems"** March 28 – 29, 2018 in Mountain View, CA

http://professional-education.mit.edu/deeplearning

For updates **Y** Follow @eems_mit

http://mailman.mit.edu/mailman/listinfo/eems-news

Acknowledgements

Research conducted in the MIT Energy-Efficient Multimedia Systems Group would not be possible without the support of the following organizations:

