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Example	Applica/ons	of	Deep	Learning	
Computer	Vision	 Speech	Recogni/on	

Game	Play	 Medical	
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Processing	at	“Edge”	instead	of	the	“Cloud”	
Privacy	

Latency	

Actuator 
Image source: ericsson.com 

Sensor 

Cloud 

Image source: 
www.theregister.co.uk 

Communica/on	
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•  Use	Video	Compression	as	a	baseline	

•  Area	cost	
–  Memory	Size	100-500kB	

•  Power	budget	
–  <	1W	for	smartphones		

•  Throughput	
–  Real-Hme	30	fps	

•  Energy	
–  ~1nJ/pixel	

Typical	Constraints	on	Edge	Processing	

HEVC	Decoder	ASIC	
[Huang	et	al.,	ISSCC	2013]		
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H.264/AVC	Decoder	ASIC	
[	Sze	et	al.,	JSSC	2009]		
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Classes FC 
Layers 

Modern deep CNN: up to 1000 CONV layers 

CONV 
Layer 

CONV 
Layer 

Low-level 
Features 

High-level 
Features 
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Deep	Convolu/onal	Neural	Networks	

CONV 
Layer 

CONV 
Layer 

Low-level 
Features 

High-level 
Features 

Classes FC 
Layers 

1 – 3 layers 
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Deep	Convolu/onal	Neural	Networks	

February, 2018 ISSCC Short Course 

Classes CONV 
Layer 

CONV 
Layer 

FC 
Layers 

Convolutions account for more 
than 90% of overall computation, 
dominating runtime and energy 
consumption 
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High-Dimensional	CNN	Convolu/on	

R 

S 

H 

a plane of input activations 
a.k.a. input feature map (fmap) 

filter (weights) 

W 

February, 2018 ISSCC Short Course 8 of 105 



High-Dimensional	CNN	Convolu/on	

R 

filter (weights) 

input fmap 

S 

Element-wise 
Multiplication 

H 

W 
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High-Dimensional	CNN	Convolu/on	

R 

filter (weights) 

S 

E 

F 
Partial Sum (psum) 

Accumulation 

input fmap output fmap 

Element-wise 
Multiplication 

H 

W 

an output  
activation 
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High-Dimensional	CNN	Convolu/on	

H 
R 

filter (weights) 

S 

E 

Sliding Window Processing 

input fmap 
an output  
activation 

output fmap 

W F 
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High-Dimensional	CNN	Convolu/on	

AlexNet:	3	–	192	Channels	(C)		

H 
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input fmap 

output fmap 
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 C …

 
filter 

…
 

Many Input Channels (C) 

E 

W F 
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High-Dimensional	CNN	Convolu/on	

AlexNet:	96	–	384	Filters	(M)		
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High-Dimensional	CNN	Convolu/on	

Image		
batch	size:		
1	–	256	(N)	
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Large	Sizes	with	Varying	Shapes	

Layer Filter Size (R) # Filters (M) # Channels (C) Stride 
1 11x11 96 3 4 
2 5x5 256 48 1 
3 3x3 384 256 1 
4 3x3 384 192 1 
5 3x3 256 192 1 

AlexNet	Convolu/onal	Layer	Configura/ons	

[Krizhevsky,	NIPS	2012]	

34k	Params	 307k	Params	 885k	Params	

Layer	1	 Layer	2	 Layer	3	

105M	MACs	 224M	MACs	 150M	MACs	
February, 2018 ISSCC Short Course 
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•  LeNet	(1998)	
•  AlexNet	(2012)	
•  OverFeat	(2013)	
•  VGGNet	(2014)	
•  GoogleNet	(2014)	
•  ResNet	(2015)	

Popular	DNNs	
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[O. Russakovsky et al., IJCV 2015] 

AlexNet	

OverFeat	

GoogLeNet	

ResNet	
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ar
ifa

i	

VGGNet	

ImageNet:	Large	Scale	Visual	Recogni/on	
Challenge	(ILSVRC)	
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Metrics LeNet-5 AlexNet VGG-16 GoogLeNet  
(v1) 

ResNet-50 

Top-5 error n/a 16.4 7.4 6.7 5.3 
Input Size 28x28 227x227 224x224 224x224 224x224 
# of CONV Layers  2 5 16 21 (depth) 49 
# of Weights 2.6k 2.3M 14.7M 6.0M 23.5M 
# of MACs 283k 666M 15.3G 1.43G 3.86G 
# of FC layers 2 3 3 1 1 
# of Weights 58k 58.6M 124M 1M 2M 
# of MACs 58k 58.6M 124M 1M 2M 
Total Weights 60k 61M 138M 7M 25.5M 
Total MACs 341k 724M 15.5G 1.43G 3.9G 

Summary	of	Popular	DNNs	

CONV Layers increasingly important! 
February, 2018 ISSCC Short Course 
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•  Evaluate	hardware	using	the	appropriate	DNN	model	and	dataset	
–  Difficult	tasks	typically	require	larger	models	
–  Different	datasets	for	different	tasks	

	

Complexity	versus	Difficulty	of	Task	

MNIST	 ImageNet	

February, 2018 ISSCC Short Course 
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Training	vs.	Inference	
Training 

(determine weights) 

Weights Large Datasets 

Inference 
(use weights) 

February, 2018 ISSCC Short Course 



Challenges 
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•  Accuracy	
–  Well	defined	dataset,	DNN	Model	and	task	

•  Programmability	
–  Support	various	DNN	Models	with	different	filter	weights	

•  Energy/Power:	
–  Energy	per	operaHon	and	DRAM	Bandwidth	

•  Throughput/Latency	
–  GOPS,	frame	rate,	delay,	batch	size	

•  Cost	
–  Area	(memory	and	logic	size)	

Key	Metrics	
ImageNet	

DRAM 

Chip	

Computer		
Vision	

Speech		
Recogni/on	

[Sze et al., CICC 2017] 
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Opportunities in Architecture 
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Proper/es	We	Can	Leverage	
•  OperaHons	exhibit	high	parallelism	

	à	high	throughput	possible	
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Proper/es	We	Can	Leverage	
•  OperaHons	exhibit	high	parallelism	

	à	high	throughput	possible	

•  Memory	Access	is	the	Bofleneck	

  
  

  
  

ALU 
  

  

Memory Read Memory Write MAC* 

* multiply-and-accumulate 

filter weight 
image pixel 
partial sum updated 

partial sum 
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Proper/es	We	Can	Leverage	
•  OperaHons	exhibit	high	parallelism	

	à	high	throughput	possible	

•  Memory	Access	is	the	Bofleneck	

•  Example:	 	AlexNet	[NIPS	2012]		has	724M	MACs		
	 	à	2896M	DRAM	accesses	required	

Worst	Case:	all	memory	R/W	are	DRAM	accesses	

  
  

  
  

ALU 
  

  

Memory Read Memory Write MAC* 

DRAM DRAM 
filter weight 
image pixel 
partial sum updated 

partial sum 

200x 1x 
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Proper/es	We	Can	Leverage	
•  OperaHons	exhibit	high	parallelism	

	à	high	throughput	possible	

•  Input	data	reuse	opportuniHes	(up	to	500x)	
	 	à	exploit	low-cost	memory	

Convolu'onal	
Reuse		
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Highly-Parallel	Compute	Paradigms	
Temporal Architecture 

(SIMD/SIMT) 
Spatial Architecture 

(Dataflow Processing) 

Register File 

Memory Hierarchy 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

Control 

Memory Hierarchy 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

ALU ALU ALU ALU 
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Temporal Architecture 
(SIMD/SIMT) 

Register File 

Memory Hierarchy 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

Control 

Spatial Architecture 
(Dataflow Processing) 

Memory Hierarchy 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

Efficient	Data	Reuse	
Distributed	local	storage	(RF)	

Inter-PE	Communica5on	
Sharing	among	regions	of	PEs	

Processing	
Element	(PE)	

Control 

Reg File 0.5 – 1.0 kB 

  

  

Advantages	of	Spa/al	Architecture	
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How	to	Map	the	Dataflow?	
Spatial Architecture 

(Dataflow Processing) 

Memory Hierarchy 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

CNN	Convolu)on	

? 
pixels 

weights 

partial 
sums 

Goal:	Increase	reuse	of	input	data	
(weights	and	pixels)	and	local	
par)al	sums	accumula4on	



Energy-Efficient Dataflow 
[Chen et al., ISCA 2016] 
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Data	Movement	is	Expensive	

Maximize	data	reuse	at	
low	cost	levels	of	

hierarchy	

DRAM Global 
Buffer 

PE 

PE PE 

ALU fetch data to run  
a MAC here 

ALU 

Buffer ALU 

RF ALU 

Normalized Energy Cost* 

200× 

6× 

PE ALU 2× 

1× 
1× (Reference) 

DRAM ALU 

0.5 – 1.0 kB 

100 – 500 kB 

NoC: 200 – 1000 PEs 

* measured from a commercial 65nm process 
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Weight	Sta/onary	(WS)	

•  Minimize weight read energy consumption 
−  maximize convolutional and filter reuse of weights 

•  Examples:  
  [Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014] 

[Park, ISSCC 2015] [Origami, GLSVLSI 2015] 

  
            

  

  

Global Buffer 

W0 W1 W2 W3 W4 W5 W6 W7 

  

  

  

  

Psum Activation 

PE 
Weight 
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WS	Example:	nn-X	(NeuFlow)	

[Farabet et al., ICCV 2009] 

A	3×3	2D	Convolu/on	Engine	

  

  

  

weights 

activations 

psums 
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•  Minimize	par/al	sum	R/W	energy	consumpHon	
−  maximize	local	accumulaHon	

•  Examples:		
		

Output	Sta/onary	(OS)	

[Gupta, ICML 2015] [ShiDianNao, ISCA 2015] 
[Peemen, ICCD 2013] 

  
            

  

  

Global Buffer 

P0 P1 P2 P3 P4 P5 P6 P7 

  

  

  

  

Activation Weight 

PE 
Psum 
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OS	Example:	ShiDianNao	
Top-Level Architecture PE Architecture 

[Du et al., ISCA 2015] 

weights activations 

psums 
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•  Use a large global buffer as shared storage 
−  Reduce DRAM access energy consumption 

•  Examples:  
  

No	Local	Reuse	(NLR)	

[DianNao, ASPLOS 2014] [DaDianNao, MICRO 2014] 
[Zhang, FPGA 2015] 

Activation 
PE 

        

Psum 

Global Buffer 

Weight 

February, 2018 ISSCC Short Course 36 of 105 



NLR	Example:	UCLA	

[Zhang et al., FPGA 2015] 

weights activations 

psums 
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Taxonomy:	More	Examples	
•  Weight	Sta/onary	(WS)	
[Chakradhar,	ISCA	2010]	 [nn-X	(NeuFlow),	CVPRW	2014]	
[Park,	ISSCC	2015]	 [ISAAC,	ISCA	2016]	 [PRIME,	ISCA	2016]	

[ShiDianNao,	ISCA	2015]	[Peemen,	ICCD	2013]	
[Gupta,	ICML	2015]	 [Moons,	VLSI	2016]	

•  Output	Sta/onary	(OS)	

[DianNao,	ASPLOS	2014]	 [DaDianNao,	MICRO	2014]	
[Zhang,	FPGA	2015]	

•  No	Local	Reuse	(NLR)	

[TPU,	ISCA	2017]	

February, 2018 ISSCC Short Course 

[Thinker,	VLSI	2017]	
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Row	Sta/onary:	Energy-efficient	Dataflow	

[Chen, ISCA 2016] 

* = 
Filter Output Fmap 

Input Fmap 
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1D	Row	Convolu/on	in	PE	

* = 
Filter Partial Sums 
a b c a b c 

a b c d e 

PE Reg File 

  
  

  

b a c 

d c e a b 

Input Fmap 
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1D	Row	Convolu/on	in	PE	

* = 
Filter 
a b c a b c 

a b c d e 

e d 

PE 
b a c 

Reg File 

b a c 

a 

  
  

  

Partial Sums 
Input Fmap 
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1D	Row	Convolu/on	in	PE	

* = 
a b c 

a b c d e Partial Sums 
Input Fmap 

PE 
b a c 

Reg File 

c b d 

b 

  
  

  e 
a 

Filter 
a b c 
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1D	Row	Convolu/on	in	PE	

* = 
a b c 

a b c d e Partial Sums 
Input Fmap 

PE 
b a c 

Reg File 

d c e 

c 

  
  

  
b a 

Filter 
a b c 
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1D	Row	Convolu/on	in	PE	

•  Maximize row convolutional reuse in RF 
−  Keep a filter row and image sliding window in RF 

•  Maximize row psum accumulation in RF 

PE 
b a c 

Reg File 

d c e 

c 

  
  

  
b a 
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2D	Convolu/on	in	PE	Array	

Row 1 Row 1 

= 

* 
PE 1 
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2D	Convolu/on	in	PE	Array	

Row 1 Row 1 

Row 2 Row 2 

Row 3 Row 3 

Row 1 

= * 

* 

* 

* 

PE 1 

PE 2 

PE 3 
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2D	Convolu/on	in	PE	Array	

Row 1 Row 1 

Row 2 Row 2 

Row 3 Row 3 

Row 1 

= * 

Row 1 Row 2 

Row 2 Row 3 

Row 3 Row 4 

= * 

* * 

* * 

* * 

Row 2 

PE 1 

PE 2 

PE 3 

PE 4 

PE 5 

PE 6 
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2D	Convolu/on	in	PE	Array	

PE 1 

Row 1 Row 1 

PE 2 

Row 2 Row 2 

PE 3 

Row 3 Row 3 

Row 1 

= * 

PE 4 

Row 1 Row 2 

PE 5 

Row 2 Row 3 

PE 6 

Row 3 Row 4 

Row 2 

= * 

PE 7 

Row 1 Row 3 

PE 8 

Row 2 Row 4 

PE 9 

Row 3 Row 5 

Row 3 

= * 

* * * 

* * * 

* * * 
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Convolu/onal	Reuse	Maximized	

Row 1 

Row 2 

Row 3 

Row 1 

Row 2 

Row 3 

Row 4 

Row 2 

Row 3 

Row 4 

Row 5 

Row 3 

* * * 

* * * 

* * * 

Row 1 

Row 2 

Row 3 

Row 1 

Row 2 

Row 3 

Row 1 

Row 2 

Row 3 

PE 1 

PE 2 

PE 3 

PE 4 

PE 5 

PE 6 

PE 7 

PE 8 

PE 9 

Filter rows are reused across PEs horizontally 
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Convolu/onal	Reuse	Maximized	

Row 1 

Row 2 

Row 3 

Row 1 

Row 1 

Row 2 

Row 3 

Row 2 

Row 1 

Row 2 

Row 3 

Row 3 

* * * 

* * * 

* * * 

Row 1 

Row 2 

Row 3 

Row 2 

Row 3 

Row 4 

Row 3 

Row 4 

Row 5 

PE 1 

PE 2 

PE 3 

PE 4 

PE 5 

PE 6 

PE 7 

PE 8 

PE 9 

Image rows are reused across PEs diagonally 
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Maximize	2D	Accumula/on	in	PE	Array	

Row 1 Row 1 

Row 2 Row 2 

Row 3 Row 3 

Row 1 Row 2 

Row 2 Row 3 

Row 3 Row 4 

Row 1 Row 3 

Row 2 Row 4 

Row 3 Row 5 

* * * 

* * * 

* * * 

Row 1 Row 2 Row 3 

PE 1 

PE 2 

PE 3 

PE 4 

PE 5 

PE 6 

PE 7 

PE 8 

PE 9 

Partial sums accumulate across PEs vertically 
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CNN	Convolu/on	–	The	Full	Picture	

Map	rows	from	mul/ple	images,	filters	and	channels	to	same	PE	
to	exploit	other	forms	of	reuse	and	local	accumulaHon	

Multiple fmaps: 

Multiple filters: 

Multiple channels: 
Image 1

=
PsumFilter 1

*
*

Image 1
=

Psum 1 & 2Filter 1 & 2
*

Image 1 & 2
=

Psum 1 & 2Filter 1

Fmap 

Fmap 

Fmap 
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•  Weight	Sta/onary	
–  Minimize	movement	of	filter	
weights	

•  Output	Sta/onary	
–  Minimize	movement	of	parHal	
sums	

•  No	Local	Reuse	
–  Don’t	use	any	local	PE	storage.	
Maximize	global	buffer	size.	

•  Row	Sta/onary	

Evaluate	Reuse	in	Different	Dataflows	

February, 2018 ISSCC Short Course 
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•  Weight	Sta/onary	
–  Minimize	movement	of	filter	
weights	

•  Output	Sta/onary	
–  Minimize	movement	of	parHal	
sums	

•  No	Local	Reuse	
–  Don’t	use	any	local	PE	storage.	
Maximize	global	buffer	size.	

•  Row	Sta/onary	

Evaluate	Reuse	in	Different	Dataflows	

Evalua/on	Setup	
•  Same	Total	Area	
•  AlexNet	
•  256	PEs	
•  Batch	size	=	16	

ALU

Buffer ALU

RF ALU

Normalized Energy Cost*

200×
6×

PE ALU 2×
1×
1× (Reference)

DRAM ALU
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Dataflow	Comparison:	CONV	Layers	

RS uses 1.4× – 2.5× lower energy than other dataflows 

Normalized 
Energy/MAC 

ALU 
RF 
NoC 
buffer 
DRAM 

0

0.5

1

1.5

2

WS OSA OSB OSC NLR RS 
CNN Dataflows [Chen, ISCA 2016] 
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Dataflow	Comparison:	CONV	Layers	

0

0.5

1

1.5

2

Normalized 
Energy/MAC 

WS OSA OSB OSC NLR RS 

psums 
weights 
pixels 

RS optimizes for the best overall energy efficiency 

CNN Dataflows 
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Dataflow	Comparison:	FC	Layers	

0

0.5

1

1.5

2

psums 
weights 
act 

Normalized 
Energy/MAC 

WS OSA OSB OSC NLR RS 
CNN Dataflows 

RS uses at least 1.3× lower energy than other dataflows 
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Row	Sta/onary:	Layer	Breakdown	

ALU 
RF 
NoC 
buffer 
DRAM 

2.0e10	

1.5e10	

1.0e10	

0.5e10	

0	
L1 L8 L2 L3 L4 L5 L6 L7 

Normalized 
Energy 

(1 MAC = 1) 

CONV Layers FC Layers 
RF dominates DRAM dominates 

Total Energy 
80% 20% 
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Hardware for Row Stationary 
Dataflow 

[Chen et al., ISSCC 2016] 
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Eyeriss	Deep	CNN	Accelerator	

[Chen	et	al.,	ISSCC	2016]	Off-Chip DRAM 

… 

… 

… 

… 

…
 

…
 

Decomp 

Comp ReLU 

Input Fmap 

Output Fmap 

Filter Filt 

Fmap 

Psum 

Psum 

Global 
Buffer 
SRAM 

 
108KB 

64 bits 

DNN Accelerator 

14×12 PE Array 

  

  

Link Clock  Core Clock  
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Data	Delivery	with	On-Chip	Network	

Off-Chip DRAM 

Decomp 

Comp ReLU 

Input Image 

Output Image 

Filter 

Buffer 
SRAM 

 
108KB 

64 bits 

DCNN Accelerator 

  
  

Link Clock  Core Clock  

… 

… 

… 

… 

…
 

…
 

Filt 

Fmap 

Psum 

Psum 

14×12 PE Array 

Filter  
Delivery 

Fmap 
Delivery 

Data Delivery Patterns 

How to accommodate different shapes with fixed PE array? 
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Logical	to	Physical	Mappings	
Replication Folding 

.. 

.. .. .. 

.. 

.. 
3 

13 
AlexNet 
Layer 3-5 

12 

14 

Physical PE Array 

3 

3 
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27 
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Physical PE Array 
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Logical	to	Physical	Mappings	
Replication Folding 

.. 

.. .. .. 

.. 

.. 
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13 
AlexNet 
Layer 3-5 

12 

14 

Physical PE Array 
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.. .. .. 
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27 
AlexNet 
Layer 2 

Physical PE Array 

12 
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5 
14 

13 
5 

Unused PEs 
are 

Clock Gated 
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Data	Delivery	with	On-Chip	Network	

Decomp 

Comp ReLU 

Input Image 

Output Image 

Filter 

Buffer 
SRAM 

 
108KB 

DCNN Accelerator 

  

  

Link Clock  Core Clock  

… 

… 

… 

… 

…
 

…
 

Filt 

Img 

Psum 

Psum 

14×12 PE Array 

Filter  
Delivery 

Image 
Delivery 

Data Delivery Patterns 

Compared to Broadcast, Multicast saves >80% of NoC energy 
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Eyeriss	Chip	Spec	&	Measurement	Results	
Technology TSMC 65nm LP 1P9M 

On-Chip Buffer 108 KB 
# of PEs 168 

Scratch Pad / PE 0.5 KB 
Core Frequency 100 – 250 MHz 

Peak Performance 33.6 – 84.0 GOPS 
Word Bit-width 16-bit Fixed-Point 

Natively Supported 
CNN Shapes 

Filter Width: 1 – 32 
Filter Height: 1 – 12 
Num. Filters: 1 – 1024 
Num. Channels: 1 – 1024 
Horz. Stride: 1–12 
Vert. Stride: 1, 2, 4 

4000 µm 
4000 µm

 

Global 
Buffer 

Spatial Array 
(168 PEs) 

AlexNet:	For	2.66	GMACs	[8	billion	16-bit	inputs	(16GB)	and	2.7	billion	outputs	
(5.4GB)],	only	requires	208.5MB	(buffer)	and	15.4MB	(DRAM)			

[Chen	et	al.,	ISSCC	2016]	
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•  Weight	Sta/onary	
–  Minimize	movement	of	filter	weights	
–  Popular	with	processing-in-memory	architectures	

•  Output	Sta/onary	
–  Minimize	movement	of	parHal	sums	
–  Different	variants	opHmized	for	CONV	or	FC	layers	

•  No	Local	Reuse	
–  No	PE	local	storage	à	maximize	global	buffer	size	

	
•  Row	Sta/onary	

–  Adapt	to	the	NN	shape	and	hardware	constraints	
–  OpHmized	for	overall	system	energy	efficiency	

Summary	of	DNN	Dataflows	
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Understanding the Energy Gap 
with Hand-Crafted Features 

[Suleiman et al., ISCAS 2016] 
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Hand-Craoed	vs.	Learned	Features	

Feature 
Extraction 

Classification 
(wTx) 

pixels Features (x) 

Trained weights (w) Image 

Scores 

Scores per class 
(select class based on 

max or threshold) 

Handcrafted Features  
(e.g. HOG) 

Learned Features  
(e.g. CNN) 
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Hand-Craoed	Features	(HOG)	
HOG	=	Histogram	of	Oriented	Gradients	
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Compare	HOG	and	CNN	5 

Object	Detec)on	using	HOG	features	
and	Deformable	Parts	Models		
[Suleiman	et	al.,	VLSI	2016]	

4000 µm 

4000 µm
 

Global 
Buffer 

Spatial Array 
(168 PEs) 

4000 µm 

4000 µm
 

Eyeriss:	Convolu1onal	Neural	
Networks	

[Chen	et	al.,	ISSCC	2016,	ISCA	2016]	

Compare	using	measured	results	from	test	chips	(65	nm)	
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Features:	Energy	vs.	Accuracy		

0.1 

1 

10 

100 

1000 

10000 

0 10 20 30 40 50 60 70 80 

Accuracy	(Average	Precision)	

Energy/	
Pixel	(nJ)	

VGG162	

AlexNet2	

HOG1	

Measured	in	65nm*	
1.   [Suleiman,	VLSI	2016]	
2.   [Chen,	ISSCC	2016]		
	
*	Only	feature	extrac6on.	Does	not	
include	data,	augmenta6on,	
ensemble	and	classifica6on	energy,	
etc.	

Measured	in	on	VOC	2007	Dataset	
1.   DPM	v5	[Girshick,	2012]	
2.   Fast	R-CNN	[Girshick,	CVPR	2015]		

Exponen6al	

Linear	

Video		
Compression	

[Suleiman	et	al.,	ISCAS	2017]	
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HOG	vs.	CNN:	Hardware	Cost	

HOG	[VLSI	2016]	 CNN	[ISSCC	2016]	

Technology	 TSMC	LP	65nm	 TSMC	LP	65m	

Gate	Count	(kgates)	 893	 1176	

Memory	(kB)	 159	 181.5	

Global 
Buffer 

Spatial Array 
(168 PEs) 

4000 µm 

4000 µm
 

4000 µm 
4000 µm

 

Similar	Hardware	Cost	(comparable	with	Video	Compression)	
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HOG	vs.	CNN:	Throughput	

Global 
Buffer 

Spatial Array 
(168 PEs) 

4000 µm 

4000 µm
 

4000 µm 
4000 µm

 

HOG	 CNN	(AlexNet)	 CNN	(VGG-16)	

Throughput	(Mpixels/s)	 62.5	 1.8	 0.04	

GOP/Mpixel	 0.7	 25.8	 610.3	

Throughput	(GOPS)	 46.0	 46.2	 21.4	

Throughput	gap	explained	by	GOP/Mpixel	gap	
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ISSCC Short Course 

Similar	Hardware	Cost	(comparable	with	Video	Compression)	

Global 
Buffer 

Spatial Array 
(168 PEs) 

4000 µm 

4000 µm
 

4000 µm 
4000 µm

 

HOG	 CNN	(AlexNet)	 CNN	(VGG-16)	

Energy	(nJ/pixel)	 0.5	 155.5	 6742.9	

GOP/Mpixel	 0.7	 25.8	 610.3	

Energy	(GOPS/W)	 1570	 166.2	 90.7	

DRAM	(B/pixel)	 1.0	 74.7	 2128.6	

Energy	gap	larger	than	GOPS/W	gap	

HOG	vs.	CNN:	Energy	and	DRAM	Access	
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•  CNNs	require	more	opera/ons	per	pixel		
–  AlexNet	vs.	HOG	=	37x	
–  VGG-16	vs.	HOG	=	872x	

•  CNN	requires	a	programmable	architecture	
–  Example:	AlexNet	CONV	layers	have	2.3M	weights	(assume	8-bits	per	

weight);	Area	budget	of	HOG	chip	is	~1000	kgates,	150kB	
–  Design	A:	Hard-wired	weights		

•  Only	have	10k	mulHpliers	with	fixed	weights	(>100x	increase	in	area)	

–  Design	B:	Store	all	weights	on-chip		
•  Only	store	150k	weights	on	chip	(>10x	increase	in	storage)	

–  Support	different	shapes	per	layer	and	different	weights	

Energy	Gap	between	CNN	and	HOG	
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Opportunities in Joint 
Algorithm Hardware Design 
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•  Reduce	size	of	operands	for	storage/compute	
–  FloaHng	point	à	Fixed	point	
–  Bit-width	reducHon	
–  Non-linear	quanHzaHon	
	

•  Reduce	number	of	operaHons	for	storage/compute	
–  Exploit	AcHvaHon	StaHsHcs	(Compression)	
–  Network	Pruning	
–  Compact	Network	Architectures	

Approaches	

February, 2018 ISSCC Short Course 



Commercial	Products	using	8-bit	Integer	

Nvidia’s	Pascal	(2016)	 Google’s	TPU	(2016)	
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•  Reduce	number	of	bits		
–  Binary	Nets	[Courbariaux,	NIPS	2015]		

•  Reduce	number	of	unique	weights	
–  Ternary	Weight	Nets	[Li,	arXiv	2016]	
–  XNOR-Net	[Rategari,	ECCV	2016]	

•  Non-Linear	Quan/za/on	
–  LogNet	[Lee,	ICASSP	2017]	

Reduced	Precision	in	Research	
Binary Filters 

Log Domain Quantization 
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•  Reduce	size	of	operands	for	storage/compute	
–  FloaHng	point	à	Fixed	point	
–  Bit-width	reducHon	
–  Non-linear	quanHzaHon	
	

•  Reduce	number	of	opera/ons	for	storage/compute	
–  Exploit	Ac/va/on	Sta/s/cs	(Compression)	
–  Network	Pruning	
–  Compact	Network	Architectures	

Approaches	

February, 2018 ISSCC Short Course 



Sparsity	in	Data	

9 -1 -3 
1 -5 5 
-2 6 -1 

Many	zeros	in	output	fmaps	aper	ReLU	
ReLU	 9 0 0 

1 0 5 
0 6 0 

0 
0.2 
0.4 
0.6 
0.8 

1 

1 2 3 4 5 

CONV Layer 

# of activations # of non-zero activations 

(Normalized)	
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I/O	Compression	in	Eyeriss	

[Chen et al., ISSCC 2016] 

… 

… 

… 

… 

…
 

…
 

ReLU 

Input Image 

Output Image 

Filter Filt 

Img 

Psum 

Psum 

Buffer 
SRAM 

 
108KB 

14×12 PE Array 

  

  

Link Clock  Core Clock  

Run-Length Compression (RLC)  

Example: 

Output (64b): 

Input:  0, 0, 12, 0, 0, 0, 0, 53, 0, 0, 22, … 

5b 16b 1b 5b 16b 5b 16b 
2 12 4 53 2 22 0 

Run Level Run Level Run Level Term 
  

Off-Chip DRAM 
64 bits 

Decomp 

Comp 

DCNN Accelerator 
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Compression	Reduces	DRAM	BW	

0	

1	

2	

3	

4	

5	

6	

1	 2	 3	 4	 5	

DR
AM

	A
cc
es
s	(
M
B)
	

AlexNet	Conv	Layer	

Uncompressed	 Compressed	

1	 2	 3	 4	 5	
AlexNet	Conv	Layer	

DRAM		
Access		
(MB)		

0	

2	

4	

6	
1.2×	

1.4×	
1.7×	

1.8×	
1.9×	

Uncompressed	
Fmaps	+	Weights	

RLE	Compressed	
Fmaps	+	Weights	

[Chen et al., ISSCC 2016] 

Simple	RLC	within	5%	-	10%	of	theoreHcal	entropy	limit	
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Data	Ga/ng	/	Zero	Skipping	in	Eyeriss	

[Chen et al., ISSCC 2016] 

Filter  
Scratch Pad 

(225x16b SRAM) 

Partial Sum 
Scratch Pad 

(24x16b REG) 

Filt 

Img 

Input 
Psum 

2-stage 
pipelined  
multiplier 

Output 
Psum   

0 

Accumulate 
Input Psum 

1 

0 

== 0 Zero 
Buffer 

Enable 
  

Image 
Scratch Pad 

(12x16b REG)   

  

  

0 
1 

   

  

    

  

  

    

Skip MAC and mem reads  
when image data is zero. 

Reduce PE power by 45% 

Reset 
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•  Process	ConvoluHon	Layers	
•  Built	on	top	of	DaDianNao	(4.49%	area	overhead)	
•  Speed	up	of	1.37x	(1.52x	with	acHvaHon	pruning)	

Cnvlu/n	

[Albericio et al., ISCA 2016] 
February, 2018 ISSCC Short Course 
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Pruning	Ac/va/ons	

[Reagen et al., ISCA 2016] [Albericio et al., ISCA 2016] 

Remove small activation values 
Speed up 11% (ImageNet) Reduce power 2x (MNIST) 

Cnvlutin 
Minerva 
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Op/mal	Brain	Damage	
1.  Choose	a	reasonable	network	

architecture	

2.  Train	network	unHl	reasonable	
soluHon	obtained	

3.  Compute	the	second	derivaHve	for	
each	weight	

4.  Compute	saliencies	(i.e.	impact	on	
training	error)	for	each	weight	

5.  Sort	weights	by	saliency	and	delete	
low-saliency	weights	

6.  Iterate	to	step	2	

Pruning	–	Make	Weights	Sparse	

[Lecun et al., NIPS 1989] 

retraining 
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Pruning	–	Make	Weights	Sparse	

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Prune based on magnitude of weights 

7UDLQ�&RQQHFWLYLW\

3UXQH�&RQQHFWLRQV

7UDLQ�:HLJKWV

Example: AlexNet 
Weight Reduction: CONV layers 2.7x, FC layers 9.9x 
(Most reduction on fully connected layers) 
Overall: 9x weight reduction, 3x MAC reduction [Han et al., NIPS 2015] 
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Compression	of	Weights	&	Ac/va/ons	
•  Compress weights and activations between DRAM and accelerator 
•  Variable Length / Huffman Coding 

•  Tested on AlexNet à 2× overall BW Reduction 

[Moons et al., VLSI 2016; 
Han et al., ICLR 2016] 

Value: 16’b0  à Compressed Code: {1’b0} 
Value: 16’bx  à Compressed Code: {1’b1, 16’bx} 

Example: 
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• Accuracy	à	Measured	on	Dataset	

•  Storage	Footprint	à	Number	of	Weights	

•  Speed	à	Number	of	MACs	

•  Energy	à	?	

Key	Metrics	for	Embedded	DNN	

February, 2018 ISSCC Short Course 
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Energy-Evalua/on	Methodology	

CNN Shape Configuration 
(# of channels, # of filters, etc.) 

CNN Weights and Input Data 

  

[0.3, 0, -0.4, 0.7, 0, 0, 0.1, …] 
CNN Energy Consumption  

L1 L2 L3 

Energy 

… 

Memory Accesses 
Optimization 

# of MACs 
Calculation 

  

  
  
  

…
 

# acc. at mem. level 1 
# acc. at mem. level 2 

# acc. at mem. level n 

# of MACs 

Hardware Energy Costs of each 
MAC and Memory Access 

Ecomp 

Edata 

[Yang et al., CVPR 2017] 
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Energy	Es/ma/on	Tool	
Website: https://energyestimation.mit.edu/  Input DNN Configuration File 

Output DNN energy breakdown across layers 

[Yang et al., CVPR 2017] 
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•  Number	of	weights	alone	is	not	a	good	metric	for	energy	

•  All	data	types	should	be	considered		
	

Key	Observa/ons	

Output	Feature	Map	
43%	

Input	Feature	Map	
25%	

Weights	
22%	

Computa/on	
10%	

Energy	Consump/on	
of	GoogLeNet	

[Yang et al., CVPR 2017] 
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AlexNet	 SqueezeNet	

GoogLeNet	

ResNet-50	
VGG-16	

77%	

79%	

81%	

83%	

85%	

87%	

89%	

91%	

93%	

5E+08	 5E+09	 5E+10	

To
p-
5	
Ac

cu
ra
cy
	

Normalized	Energy	Consump/on	

Original	DNN	

Deeper	CNNs	with	fewer	weights	do	not	necessarily	consume	less	energy	
than	shallower	CNNs	with	more	weights	

[Yang et al., CVPR 2017] 

Energy	Consump/on	of	Exis/ng	DNNs	
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Reduce	number	of	weights	by	removing	small	magnitude	weights	

AlexNet	 SqueezeNet	

GoogLeNet	

ResNet-50	
VGG-16	

AlexNet	

SqueezeNet	

77%	

79%	

81%	

83%	

85%	

87%	

89%	

91%	

93%	

5E+08	 5E+09	 5E+10	

To
p-
5	
Ac

cu
ra
cy
	

Normalized	Energy	Consump/on	

Original	DNN	 Magnitude-based	Pruning	[6]	[Han	et	al.,	NIPS	2015]	

Magnitude-based	Weight	Pruning	
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AlexNet	 SqueezeNet	

GoogLeNet	

ResNet-50	
VGG-16	

AlexNet	

SqueezeNet	

AlexNet	 SqueezeNet	

GoogLeNet	

77%	

79%	

81%	

83%	

85%	

87%	

89%	

91%	

93%	

5E+08	 5E+09	 5E+10	

To
p-
5	
Ac

cu
ra
cy
	

Normalized	Energy	Consump/on	

Original	DNN	 Magnitude-based	Pruning	[6]	 Energy-aware	Pruning	(This	Work)	

1.74x 

[Yang et al., CVPR 2017] 

Energy-Aware	Pruning	

February, 2018 ISSCC Short Course 

Remove	weights	from	layers	in	order	of	highest	to	lowest	energy	3.7x	
reduc/on	in	AlexNet	/	1.6x	reduc/on	in	GoogLeNet	
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Network	Architecture	Design	

5x5 filter Two 3x3 filters 

decompose 

Apply sequentially 

decompose 

5x5 filter 5x1 filter 

1x5 filter 

Apply sequentially 

GoogleNet/
Incep/on	v3	

VGG-16	

Build	Network	with	series	of	Small	Filters	

separable  
filters 

February, 2018 ISSCC Short Course 



Bo=leneck	in	Popular	DNN	models	

ResNet	

GoogleNet	

compress 

expand 

compress 

Reduce	size	and	computaHon	with	1x1	Filter	(bo=leneck)	
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SqueezeNet	

[Iandola et al., ICLR 2017]] 

Fire Module 

Reduce weights by reducing number of input channels by 
“squeezing” with 1x1 

50x fewer weights than AlexNet 
(no accuracy loss) 
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SqueezeNet	

February, 2018 ISSCC Short Course 

0 

5 

10 

15 

20 

AlexNet SqueezeNet 
0 

200 

400 

600 

800 

AlexNet SqueezeNet 
0 

20 

40 

60 

AlexNet SqueezeNet 

Deeper CNNs with fewer weights do not necessarily consume 
less energy than shallower CNNs with more weights 

Normalized 
Energy 

# of Weights # of Layers 

x105 x108 

51.8x 
2.3x 

1.3x 

Measured with energy estimation tool: http://energyestimation.mit.edu   
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Opportunities in Advanced 
Technologies 
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Advanced	Memory	Technologies	
Many	new	memories	and	devices	explored	to	reduce	data	movement	

V1	
G1	

I1	=	V1×G1	
V2	

G2	

I2	=	V2×G2	

I	=	I1	+	I2		
=	V1×G1	+	V2×G2	

Stacked	DRAM	

eDRAM		
[Chen	et	al.,	DaDianNao,	MICRO	2014]	

[Kim	et	al.,	NeuroCube,	ISCA	2016]	
[Gao	et	al.,	Tetris,	ASPLOS	2017]	

Non-Vola/le	Resis/ve	
Memories	

[Shafiee	et	al.,	ISCA	2016]	
[Chi	et	al.,	PRIME,	ISCA	2016]	

WS		
dataflow	

Eyeriss	
design	
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•  DNNs	are	a	cri/cal	component	in	the	AI	revolu/on,	delivering	record	
breaking	accuracy	on	many	important	AI	tasks	for	a	wide	range	of	
applicaHons;	however,	it	comes	at	the	cost	of	high	computa/onal	complexity	

•  Efficient	processing	of	DNNs	is	an	important	area	of	research	with	many	
promising	opportuniHes	for	innovaHon	at	various	levels	of	hardware	design,	
including	algorithm	co-design	

•  When	considering	different	DNN	soluHons	it	is	important	to	evaluate	with	
the	appropriate	workload	in	term	of	both	input	and	model,	and	recognize	
that	they	are	evolving	rapidly.	

•  It’s	important	to	consider	a	comprehensive	set	of	metrics	when	evaluaHng	
different	DNN	soluHons:	accuracy,	speed,	energy,	and	cost	

Summary	

February, 2018 ISSCC Short Course 
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