Efficient Edge Solutions for
Deep Learning Applications

Vivienne Sze

Massachusetts Institute of Technology

In collaboration with

Yu-Hsin Chen, Joel Emer, Tien-Ju Yang
Contact Info

email: sze@mit.edu
website: www.rle.mit.edu/eems

February, 2018 ISSCC Short Course

1 of 105

Example Applications of Deep Learning

Computer V|S|on

person

chair

)

i Slbpl-(l)AS 050) o .LEE SEDOL |
o0 e . ' & ? ;‘ l(-
) B 00:01:00

February, 2018 ISSCC Short Course 2 of 105

Processing at “Edge” instead of the “Cloud”

Privacy Communication

‘ ‘ t?? l. \ "!
36% COMPLETE

‘ Image source:

www.theregister.co.uk

—@

Latency

B8BEE E Transmitter

Sensor
Receiver
< -
z Cloud
Image source: ericsson.com
Actuator

February, 2018 ISSCC Short Course 3 of 105

Typical Constraints on Edge Processing

|
|||||||||||||||||||||

* Use Video Compression as a baseline

* Area cost
— Memory Size 100-500kB

3.3 mm

SEssansnng jsassss)
00000000 O

 Power budget

Energy HEVC Decoder ASIC H.264/AVC Decoder ASIC
— < 1W for smartphones (nJ/pixel) [Huang et al., ISSCC 2013] [Sze et al., JSSC 2009]
* Throughput 2
— Real-time 30 fps 15
* Energy 1
— ~1nl/pixel
0.5 -

0~ H.264/AVC H.264/AVC H.265/HEVC H.265/HEVC
February, 2018 Decoder Encoder Decoder Encoder

Deep Convolutional Neural Networks
Modern deep CNN: up to 1000 CONYV layers

Low-level
Features Features

February, 2018 ISSCC Short Course 5 of 105

Deep Convolutional Neural Networks
1 -3 layers

Features

February, 2018 ISSCC Short Course 6 of 105

Deep Convolutional Neural Networks

February, 2018

CONV FC
Layer Layers

Convolutions account for more
than 90% of overall computation,
dominating runtime and energy
consumption

ISSCC Short Course

7 of 105

High-Dimensional CNN Convolution

a plane of input activations
a.k.a. input feature map (fmap)

filter (weights)

!
R
) .

«— S —

February, 2018 ISSCC Short Course 8 of 105

High-Dimensional CNN Convolution

input fmap

filter (weights)

T

«— S —

Element-wise
Multiplication

February, 2018 ISSCC Short Course 9 of 105

High-Dimensional CNN Convolution

input fmap output fmap
filter (weights ! — an output
(weights) igﬁ -| activation
! itl&,\. -
REEE| ® |ENGES
l' A\ AN
«— § — Y
Element-wise Partial Sum (psum)
Multiplication Accumulation

February, 2018 ISSCC Short Course

10 of 105

High-Dimensional CNN Convolution

input fmap output fmap

an output
= activation

Sliding Window Processing

February, 2018 ISSCC Short Course 11 of 105

High-Dimensional CNN Convolution

input fmap

. C,{"

filter K output fmap
T /’/

. H

Rl —1H & = D e
l' ! R !
<~ 8§ — < W > < F >

Many Input Channels (C)

AlexNet: 3 — 192 Channels (C)

February, 2018 ISSCC Short Course 12 of 105

High-Dimensional CNN Convolution

input fmap

many output fma
filters (M) L S i g
e A >’
‘(l . . l—1 4
R A 3 ol
«— S — < w > < F >
X
: Many
. Output Channels (M)
T‘_/C"OI /“.
s
UM
p-—e AlexNet: 96 — 384 Filters (M)

February, 2018 ISSCC Short Course 13 of 105

High-Dimensional CNN Convolution

Many

Input fmaps (N Mfany N
. Output fmaps
filters S ’ P . Ps (N)
A M~ .
c’ =
TA(.
H
R E
| i ik
<~ S — < «— F —
Image .
batch size: . .
1-256 (N) o A/c_:?l =
!
R = . 1 |= D ¢
| /[N
S \IN —F =

February, 2018

14 of 105

Large Sizes with Varying Shapes

AlexNet Convolutional Layer Configurations

Layer Filter Size (R) # Filters (M) # Channels (C) Stride

1 11x11 96 3 4

2 5x5 256 48 1

3 3x3 384 256 1

4 3x3 384 192 1

5 3x3 256 192 1

Layer 1 Layer 2 Layer 3 [Krizhevsky, NIPS 2012]

34k Params 307k Params 885k Params
105M MACs 224M MACs 150M MACs

February, 2018

ISSCC Short Course

15 of 105

Popular DNNs

ImageNet: Large Scale Visual Recognition

* LeNet (1998) . Challenge (ILSVRC)
+ AlexNet (2012) o 1 AlgENet
* OverFeat (2013) % E
+ VGGNet (2014) S 10
* GoogleNet (2014) § Z -
. ResNet (2015))) :L)%
0

2012 2013 2014 2015 Human
[O. Russakovsky et al., IJCV 2015]
February, 2018 ISSCC Short Course 16 of 105

Summary of Popular DNNs

Metrics LeNet-5 | AlexNet GooglLeNet | ResNet-50
(v1)

Top-5 error n/a 16.4 7.4 6.7 5.3

Input Size 28x28 227x227 224x224 224x224 224x224

of CONV Layers 2 5 16 21 (depth) 49

of Weights 2.6k 2.3M 14.7TM 6.0M 23.5M

of MACs 283k 666M 15.3G 1.43G 3.86G

of FC layers 2 3 3 1 1

of Weights 58k 58.6M 124M 1M 2M

of MACs 58k 58.6M 124M 1M 2M

Total Weights 60k 61M 138M ™ 25.5M

Total MACs 341k 724M 15.5G 1.43G 3.9G

February, 2018

CONV Layers increasingly important!

ISSCC Short Course

17 of 105

Complexity versus Difficulty of Task

* Evaluate hardware using the appropriate DNN model and dataset
— Difficult tasks typically require larger models

— Different datasets for different tasks

MNIST
F e/ 79 b 6 a |\
6 757 ¢ 6 3 4 g5
X (7 90/ &3 ¥ 6
Wy 90! ¢ % 9 ¢
T 6l ¥ F4d /5 E0
7592 65 %\ 97
ZR222AD %4 g O
D a3 ¥O0O73 6§57 B e = o
Ol «lodq b2« 3 o e
772806486/ b= et e Sal

February, 2018 ISSCC Short Course 18 of 105

Training vs. Inference

Training Inference
(determine weights) (use weights)

!7.: ,:_77 ‘l
Large Datasets] @ @
o Weights | ‘ |

- - -~ T v e o] i s
= &= e T iy B T B

February, 2018 ISSCC Short Course 19 of 105

Challenges

February, 2018 ISSCC Short Course 20 of 105

Key Metrics

ImageNet
* Accuracy e e O s
— Well defined dataset, DNN Model and task it i
* Programmability
— Support various DNN Models with different filter weights
* Energy/Power: Computer Speech

- Vision Recognition

-

— Energy per operation and DRAM Bandwidth

W

Throughput/Latency
— GOPS, frame rate, delay, batch size

Cost

— Area (memory and logic size)

DRAM

[Sze et al., CICC 2017]
February, 2018 ISSCC Short Course 21 of 105

Opportunities in Architecture

SSSSSSSSSSSSSSSS

Properties We Can Leverage

* Operations exhibit high parallelism
- high throughput possible

February, 2018 ISSCC Short Course 23 of 105

Properties We Can Leverage

* Operations exhibit high parallelism
- high throughput possible

* Memory Access is the Bottleneck

Memory Read MAC’ Memory Write

filter wei_qhtg

image pixel: ALU
partial sum : % . updated
. partial sum

* multiply-and-accumulate

February, 2018 ISSCC Short Course

24 of 105

Properties We Can Leverage

* Operations exhibit high parallelism
- high throughput possible

* Memory Access is the Bottleneck

Memory Read MAC’ Memory Write

filter weight

- , ALU

image pixel dated

partial sum up _ae
partial sum

200x 1x
Worst Case: all memory R/W are DRAM accesses

e Example: AlexNet [nips 2012] has 724M MACs
— 2896M DRAM accesses required

February, 2018 ISSCC Short Course 25 of 105

Properties We Can Leverage

* Operations exhibit high parallelism
- high throughput possible

* Input data reuse opportunities (up to 500x)
- exploit low-cost memory

Filter

Image

—

Convolutional

Reuse

(pixels, weights)

Filters

1

/-

™~
>

Image

2

O /|
\ .

Image

Reuse

(pixels)

Filter

Filter
Reuse
(weights)

February, 2018

ISSCC Short Course

26 of 105

Highly-Parallel Compute Paradigms

Temporal Architecture Spatial Architecture
(SIMD/SIMT) (Dataflow Processing)

Memory Hierarchy

Memory Hierarchy

Register File

February, 2018 ISSCC Short Course 27 of 105

‘Advantages of Spatial Architecture

Spatial Architecture
(Dataflow Processing)

Efficient Data Reuse Memory Hierarchy
Distributed local storage (RF)

Inter-PE Communication
Sharing among regions of PEs

Processing
Element (PE)

0.5-1.0kB Reg File |HNRE TSN

Control
ISSCC Short Course

28 of 105

February, 2018

How to Map the Dataflow?

Spatial Architecture
(Dataflow Processing)

CNN Convolution
Memory Hierarchy

pixels
weights

partial
sums

Goal: Increase reuse of input data
(weights and pixels) and local
— partial sums accumulation

29 of 105

Energy-Efficient Dataflow

[Chen et al., ISCA 2016]

SSSSSSSSSSSSSSSS

Data Movement is Expensive

NoC: 200 - 1000 PEs

Global
Buffer

PE H PE

PE

ALU fetch data to run

Normalized Enerqgy Cost

a MAC here

ALU

0.5-1.0 kB [lg—>

ALU

PE |—

ALU

ALU

ALU

* measured from a commercial 65nm process

1% (Reference)
1%

2%
6%

{

200x

Maximize data reuse at
low cost levels of
hierarchy

February, 2018

ISSCC Short Course

31 of 105

Weight Stationary (WS)

Global Buffer
Activation

 Minimize weight read energy consumption
— maximize convolutional and filter reuse of weights

« Examples:

[Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014]
[Park, ISSCC 2015] [Origami, GLSVLS/ 2015]

February, 2018 ISSCC Short Course 32 of 105

WS Example: nn-X (NeuFlow)

activations

A 3x3 2D Convolution Engine

operations in ALU

. Data stream from /
. | to memory

Kernel loaded
from CPU

[Farabet et al.

[W-K] delays
A

AHA A\H line m |

~

[W-K] delays
S U

|fA H A |-+ A J-line m+1

2D CONV)

, ICCV 2009]

February, 2018

ISSCC Short Course

33 of 105

Output Stationary (OS)

Global Buffer

* Minimize partial sum R/W energy consumption

— maximize local accumulation

 Examples:

[Gupta, ICML 2015] [ShiDianNao, /ISCA 2015]
[Peemen, /ICCD 2013]

February, 2018 ISSCC Short Course 34 of 105

OS Example: ShiDianNao

Input
Image

Top-Level Architecture

. ShiDianNao:
NBin: l
. [Bank #0
: o -
Bank #2Py-1 o Fout
o
| NBout: 5 (Columm
' |» Bank #0 o
, . L‘_) Px*Py
- @ Input
Bank #2Py-1 £ (Row)
>
: : @
. |» Bank #0 Px*Py
: B Kernel
Bank #Py-1 Px*Py
Output

IB:
Decoder Inst.
N|=u:l
>
Px
*
Py %e
\/
ALU

[Du et al., ISCA 2015]

PE Architecture

weights

Ke

rnel

activations

Neulron PE(right) PE(?ottom)

February, 2018

ISSCC Short Course

35 of 105

No Local Reuse (NLR)

Global Buffer

Weight _LI_]] yw
Activation XX 1! A 1 A 1 Ad A!
20 [T @0 2|20 50 12 ¢ 5| @6 2] @ [L,]| 9D |pe
Psum

« Use a large global buffer as shared storage
— Reduce DRAM access energy consumption

« Examples:

[DianNao, ASPLOS 2014] [DaDianNao, M/ICRO 2014]
[Zhang, FPGA 2015]

February, 2018 ISSCC Short Course 36 of 105

NLR Example: UCLA

——_——— et —_—-—- - - . e
Output Buffer SetO : :
|
. : HFQ,
| | -
|
| !
————————————————————————— Programmable
e Controller
Crossbar A A
Compute Engipe : : off-chip
cee : : data
K---- eeeaan]» tra nsfer
Intrabuffer
| e - ! mgr
>
e [-
| : ' :
: ! | i FIFO
: o | T
' Input Buffer Set0 : ' Input Buffer Setl :
e e o e e e e e e e e e e o —
activations T weights

February, 2018 ISSCC Short Course [Zhang et al., FPGA 2015] 37 of 105

Taxonomy: More Examples

 Weight Stationary (WS)

[Chakradhar, /ISCA 2010] [nn-X (NeuFlow), CVPRW 2014]
[Park, ISSCC 2015] [ISAAC, ISCA 2016] [PRIME, /ISCA 2016]

e Qutput Stationary (OS)

[Peemen, ICCD 2013] [ShiDianNao, /SCA 2015]
[Gupta, ICML 2015] [Moons, VLS 2016] [Thinker, VLS/ 2017]

* No Local Reuse (NLR)

[DianNao, ASPLOS 2014] [DaDianNao, MICRO 2014]
[Zhang, FPGA 2015] [TPU, ISCA 2017]

February, 2018 ISSCC Short Course

38 of 105

Row Stationary: Energy-efficient Dataflow

Input Fmap
Filter Output Fmap

[Chen, ISCA 2016]

February, 2018 ISSCC Short Course 39 of 105

1D Row Convolution in PE

Input Fmap

Sl

aboc

*

Reg File

Partial Sums

[Chen, ISCA 2016]

February, 2018

ISSCC Short Course

40 of 105

1D Row Convolution in PE
Input Fmap

Filter Partial Sums

ab o «

Reg File

M
IpEBE
-0

[Chen, ISCA 2016]

February, 2018 ISSCC Short Course 41 of 105

1D Row Convolution in PE
Input Fmap

Filter Partial Sums

albc N

Reg File

[Chen, ISCA 2016]

February, 2018 ISSCC Short Course 42 of 105

1D Row Convolution in PE
Input Fmap

Filter Partial Sums

abc N

Reg File

I
O
-0

[Chen, ISCA 2016]

February, 2018 ISSCC Short Course 43 of 105

1D Row Convolution in PE

Maximize row convolutional reuse in RF
- Keep a filter row and image sliding window in RF

Maximize row psum accumulation in RF

Reg File

T
O
-0

[Chen, ISCA 2016]

February, 2018

ISSCC Short Course

44 of 105

2D Convolution in PE Array

PE 1

Row1y Row1

February, 2018 ISSCC Short Course 45 of 105

2D Convolution in PE Array

1 PE 2
T PE 3

February, 2018 ISSCC Short Course 46 of 105

2D Convolution in PE Array

Row 1 Row 2
T PE 1 T PE 4
Row1 Row1 |M[Row1y Row2
Y PE 2 I PE5
Row2j; Row2 |M[Row2 Row3
1 PE 3 1 PE 6
Row3[; Row3 |M[Row3j Row4

R« B = B i = 6

February, 2018

ISSCC Short Course

47 of 105

2D Convolution in PE Array

Row 1 Row 2 Row 3
T PE 1 T PE 4 T PE 7
Row1y Row1 |M[Row1f Row2 |M|Row1{ Row3
1 PE 2 1 PE5 1 PE 8
Row2j Row2 |M[Row2(Row3 |M|Row2{ Row4
1 PE 3 I PE 6 1 PE 9
Row3j Row3 |M[Row3 Row4 |WRow3[Row5

R« B = B = B *] =

February, 2018

ISSCC Short Course

48 of 105

Convolutional Reuse Maximized

PE 1 PE 4 PE 7
PE 2 PE 5 PE 8
PE 3 PE 6 PE 9

Filter rows are reused across PEs horizontally

February, 2018 ISSCC Short Course 49 of 105

Convolutional Reuse Maximized

PE 1 PE 4 PE 7
PE 2 PE 5 PE 8
PE 3 PE 6 PE 9

Image rows are reused across PEs diagonally

February, 2018

ISSCC Short Course

50 of 105

Maximize 2D Accumulation in PE Array

T PE 1 T PE 4 T PE 7
T PE 2 T PE 5 T PE 8
I PE 3 T PE 6 I PE9

Partial sums accumulate across PEs vertically

February, 2018 ISSCC Short Course 51 of 105

CNN Convolution — The Full Picture

PE PE PE
Rowi1l Row1 |§/Rowi Row2 |J§/Rowiy Row3 |
PE PE PE

Row2, Row2 |§/Row2) Row3 |§/Row2y Rowd |

-

- -
-_ ---
- - o
—‘

Filter 1 Fmap 1 & 2 Psum1&2 ~~°
Multiple fmaps: (] (O] -~ (I
Filter1 & 2 Fmap 1 Psum 1 & 2
Multiple filters: [T + (N = (RIII
Filter 1 Fmap 1 Psum

Muitiple channels: [TIRITIRITTN - [T - ER

Map rows from multiple images, filters and channels to same PE
to exploit other forms of reuse and local accumulation

February, 2018

ISSCC Short Course

52 of 105

Evaluate Reuse in Different Dataflows

* Weight Stationary

— Minimize movement of filter
weights

* Output Stationary

— Minimize movement of partial
sums

* No Local Reuse

— Don’t use any local PE storage.
Maximize global buffer size.

* Row Stationary

February, 2018 ISSCC Short Course 53 of 105

Evaluate Reuse in Different Dataflows

* Weight Stationary
— Minimize movement of filter
weights
* Output Stationary

— Minimize movement of partial
sums

* No Local Reuse

— Don’t use any local PE storage.

Maximize global buffer size. i

Evaluation Setup

« Same Total Area
 AlexNet

e 256 PEs

e Batchsize =16

ALU

ALU

ALU

ALU

* Row Stationary m

ALU

Normalized Energy Cost’

1% (Reference)
1%

N 200x

February, 2018 ISSCC Short Course

54 of 105

Dataflow Comparison: CONV Layers

2

[
= ALU
N lized RF
ormalize = NoC
Energy/MAC . e = buffer
“ DRAM
o
S, 0S; OS; NLR RS
CNN Dataflows [Chen, ISCA 2016]

RS uses 1.4x — 2.5% lower energy than other dataflows ‘

February, 2018 ISSCC Short Course 55 of 105

Dataflow Comparison: CONV Layers

Normalized
Energy/MAC I

S, 0S5 0SS,
CNN Dataflows

RS optimizes for the best overall energy efficiency

 psums
“ weights
pixels

February, 2018 ISSCC Short Course 56 of 105

Dataflow Comparison: FC Layers

Normalized
Energy/MAC l

S, 0S5 0SS,
CNN Dataflows

RS uses at least 1.3% lower energy than other dataflows

= psums
“ weights
= act

February, 2018 ISSCC Short Course 57 of 105

Row Stationary: Layer Breakdown

2.0e10 . Total Energy
80% * ™ 20%

1.5e10 - = ALU

Normalized — RF
Energy 1.0e10 - - NOC

(1 MAC = 1) mu buffer

0.5e10 — “ DRAM

I . .
L1 L2 L3 L4 L5
CONV Layers FC Layers

| RF dominates | | DRAM dominates |

February, 2018 ISSCC Short Course 58 of 105

Hardware for Row Stationary

Dataflow

[Chen et al., ISSCC 2016]

SSSSSSSSSSSSSSSS

Eyeriss Deep CNN Accelerator

Link Clock: Core Clock
<=n)-

DNN Accelerator

Filter Filt

Input Fmap s

ecombp adA

Output Fmap BIE%:

i 14x12 PE Array

Off-Chip DRAM
64 bits

[Chen et al., ISSCC 2016]

February, 2018 ISSCC Short Course

60 of 105

Data Delivery with On-Chip Network

Data Delivery Patterns

Filter
Delivery

Delivery

14x12 PE Array

How to accommodate different shapes with fixed PE array?

February, 2018

ISSCC Short Course

61 of 105

Logical to Physical Mappings

Replication Folding
13
AlexNet _3 AlexNet 3
Layer 3-5 3&{' Layer2 °
! 2 l i&
14
3 13
— 0
313

Physical PE Array Physical PE Array

February, 2018 ISSCC Short Course 62 of 105

Logical to Physical Mappings

Replication Folding
13 27
AlexNet AlexNet
Layer 3-5 3 Layer2 °

' h

N
Unused PEs 45 “
are
Clock Gated “I

Physical PE Array Physical PE Array

February, 2018 ISSCC Short Course 63 of 105

Data Delivery with On-Chip Network

Link Clock Core Clock

—<

DCNN Accelerator

Filter
Delivery

Delivery

14x12 PE Array

Compared to Broadcast, Multicast saves >80% of NoC energy

February, 2018

ISSCC Short Course

64 of 105

Everiss Chip Spec & Measurement Results

Technology | TSMC 65nm LP 1P9M
On-Chip Buffer | 108 KB < 4000pym ——
of PEs | 168 —_—
Scratch Pad / PE | 0.5 KB
Core Frequency | 100 - 250 MHz “|E -1 :
Peak Performance | 33.6 — 84.0 GOPS

Word Bit-width | 16-bit Fixed-Point
Filter Width: 1 — 32
Filter Height: 1 - 12
Natively Supported | Num. Filters: 1 — 1024 E
CNN Shapes | Num. Channels: 1 — 1024
Horz. Stride: 1-12 — R ———
Vert. Stride: 1,2, 4 [Chen et al., ISSCC 2016]

AlexNet: For 2.66 GMACs [8 billion 16-bit inputs (16GB) and 2.7 billion outputs
(5.4GB)], only requires 208.5MB (buffer) and 15.4MB (DRAM)

February, 2018 ISSCC Short Course

65 of 105

Summary of DNN Dataflows

* Weight Stationary
— Minimize movement of filter weights
— Popular with processing-in-memory architectures

* Output Stationary
— Minimize movement of partial sums
— Different variants optimized for CONV or FC layers

* No Local Reuse
— No PE local storage = maximize global buffer size

* Row Stationary
— Adapt to the NN shape and hardware constraints
— Optimized for overall system energy efficiency

February, 2018 ISSCC Short Course 66 of 105

Understanding the Energy Gap

with Hand-Crafted Features

[Suleiman et al., ISCAS 2016]

February, 2018 ISSCC Short Course 67 of 105

Hand-Crafted vs. Learned Features

Trained weights (w)

!

Feature | Features (X){Classification SCOFGS>

Extraction,}' N wlx
— = (W) Scores per class
o’ S
_e” Seo (select class based on
JPtiad TS max or threshold)
’I” \\\
'I \\
’I \\
’o” \\s
-~ Handcrafted Features Learned Features “~J

(e.g. HOG) (e.g. CNN)

February, 2018 ISSCC Short Course 68 of 105

Hand-Crafted Features (HOG)

HOG = Histogram of Oriented Gradients

Input Image

Gradient Vector

ZIsLzl e d=Is s
Sensonan
=lelt]sl 710} 717
=Islzis 0SS

1]7]-]-11]-]7]~
=ISIM =172 0=1S

H12]=ISI=IN Ve
noogQosuo

o
c

Bin 1
Bin 2
Bin 3
Bin4
BinS
Bin 6
Bin7
Bin 8

@

Cell Histogram

HOG Features

February, 2018

ISSCC Short Course

69 of 105

Compare HOG and CNN

Compare using measured results from test chips (65 nm)

< 4000 pm > < 4000 um >
= — A
=N
=)
=
=)
=
3
e v
Object Detection using HOG features Eyeriss: Convolutional Neural
and Deformable Parts Models Networks
[Suleiman et al., VLSI 2016] [Chen et al., ISSCC 2016, ISCA 2016]

February, 2018 ISSCC Short Course 70 of 105

Features: Energy vs. Accuracy

Exponential
10000 * VGG162
1000
AlexNet?
Energy/ 100 :
Pixel (nJ)
10 _
Measured in 65nm* Video
1. [Suleiman, VLSI 2016] 1 Compression
2. [Chen, ISSCC 2016] + HOG! Linear
0.1 I I I [[I I]
* Only feature extraction. Does not
include data, augmentation, 0 10 20 30 40 50 60 70 80
ble and classificati) . .
U assification energy. Accuracy (Average Precision)
Measured in on VOC 2007 Dataset
. 1. DPM v5 [Girshick, 2012]
[Suleiman et al., ISCAS 2017] 2. Fast R-CNN [Girshick, CVPR 2015]
February, 2018 ISSCC Short Course 71 of 105

HOG vs. CNN: Hardware Cost

<« 4000 ym — <« 4000 pm

| B | 5

[) il

e) B o

""" = |=

3 | 3

HOG [VLSI 2016] CNN [ISSCC 2016]
Technology TSMC LP 65nm TSMC LP 65m

Gate Count (kgates) 893 1176
Memory (kB) 159 181.5

Similar Hardware Cost (comparable with Video Compression)
February, 2018 ISSCC Short Course 72 of 105

HOG vs. CNN: Throughpgt

« 4000 ym —

HOG CNN (AlexNet) | CNN (VGG-16)
Throughput (Mpixels/s) 62.5 1.8 0.04
GOP/Mpixel 0.7 25.8 610.3
Throughput (GOPS) 46.0 46.2 21.4

Throughput gap explained by GOP/Mpixel gap

February, 2018

ISSCC Short Course

o

o
ul

HOG vs. CNN: Energy and DRAM Access

— 4000 pm =,

«— 4000 pm —

HOG CNN (AlexNet) | CNN (VGG-16)
Energy (nJ/pixel) 0.5 155.5 6742.9
GOP/Mpixel 0.7 25.8 610.3
Energy (GOPS/W) 1570 166.2 90.7
DRAM (B/pixel) 1.0 74.7 2128.6

February, 2018

Energy gap larger than GOPS/W gap

74 of 105

Energy Gap between CNN and HOG

 CNNs require more operations per pixel
— AlexNet vs. HOG = 37x
— VGG-16 vs. HOG = 872x

* CNN requires a programmable architecture

— Example: AlexNet CONV layers have 2.3M weights (assume 8-bits per
weight); Area budget of HOG chip is ~1000 kgates, 150kB

— Design A: Hard-wired weights

« Only have 10k multipliers with fixed weights (>100x increase in area)

— Design B: Store all weights on-chip

* Only store 150k weights on chip (>10x increase in storage)

— Support different shapes per layer and different weights

February, 2018 ISSCC Short Course

75 of 105

Opportunities in Joint

Algorithm Hardware Design

SSSSSSSSSSSSSSSS

Approaches

* Reduce size of operands for storage/compute
— Floating point = Fixed point
— Bit-width reduction

— Non-linear quantization

* Reduce number of operations for storage/compute

— Exploit Activation Statistics (Compression)
— Network Pruning

— Compact Network Architectures

February, 2018 ISSCC Short Course 77 of 105

Commercial Products using 8-bit Integer

Nvidia’s Pascal (2016) Google’s TPU (2016)

February, 2018 ISSCC Short Course 78 of 105

Reduced Precision in Research

« Reduce number of bits Binary Filters
— Binary Nets [Courbariaux, NIPS 2015] M 1 - =
[| |
* Reduce number of unique weights - -
— Ternary Weight Nets [Li, arXiv 2016] 1 F - n
— XNOR-Net [Rategari, ECCV 2016] L. r m kb

* Non-Linear Quantization
_ LogNet [Lee, ICASSP 2017] Log Domain Quantization

linear quantizer
T T T T T

Iog2 quantizer

3000 | | A 3000 T TTTTT T 1
2500 + : | l-- bOledarles | 5500 | : . -- boundaries |
2000 | 2000 | |
1500 | 1500 ¢ i i
1000 | 1000 | |
500 | 500 | |
0 0
-0.2 -0.1 0 0.1 0.2 -0.2 -0.1 0 0.1 0.2

Weight Values Weight Values

February, 2018 ISSCC Short Course 79 of 105

Approaches

* Reduce size of operands for storage/compute
— Floating point = Fixed point
— Bit-width reduction

— Non-linear quantization

* Reduce number of operations for storage/compute

— Exploit Activation Statistics (Compression)
— Network Pruning

— Compact Network Architectures

February, 2018 ISSCC Short Course 80 of 105

Sparsity in Data

Many zeros in output fmaps after ReLU

9

-1

-3

RelU

1

-5

5

-2

6

-1

(Normalized)

0.8 -
0.6 -
04 -
0.2 -

W # of activations B # of non-zero activations

1 2 3 4
CONYV Layer

February, 2018

ISSCC Short Course

81 of 105

/O Compression in Eyeriss

DCNN Accelerator

-

-
-
I |

Run-Length Compression (RLC)

Example:

Input: 0,0,12,0,0,0,0,53,0,0, 22, ...

Output (64b): RunLevelRunLevel RunLevellerm

2] 12

4

53 _

2

22

0

< > < > < > >
Sb 16b 5b 16b 5b 16b 1b

64 bits

N DRA

[Chen et al., ISSCC 2016]

February, 2018

ISSCC Short Course

82 of 105

Compression Reduces DRAM BW

1.2x
6 m| 1.4x
DRAM - Uncompressed
Access Fmaps + Weights
(MB)

- RLE Compressed
0 ich
1 2 3 4 5 Fmaps + Weights

AlexNet Conv Layer

Simple RLC within 5% - 10% of theoretical entropy limit
[Chen et al., ISSCC 2016]

February, 2018 ISSCC Short Course 83 of 105

Data Gating / Zero Skipping in Eyeriss

Skip MAC and mem reads
Image when image data is zero.
Img — Scratch Pad] . Reduce PE power by 45%
I (12x16b REG) r= >l
: 2-stage
==0l»| Zero | = = = =f Enable pipelined Accumulate
Buffer : muItipIier I?put Psum o
Scratch Pad A n @ 0 Psum
l: (225x16b SRAM) I N
- J1]
Input L
Psum 0 —!1
Partial Sum
Scratch Pad (N 0
(24x16b REG) - Reset
[Chen et al., ISSCC 2016]

February, 2018 ISSCC Short Course 84 of 105

Cnvlutin

* Process Convolution Layers
* Built on top of DaDianNao (4.49% area overhead)
Speed up of 1.37x (1.52x with activation pruning)

1.8 mmm CNV CNV + Pruning

NBin subunit O 1.7

1.6

NBout 1.5

Neuron P
Lane 3

Offsets 2

Neurons

Filter O | Synapse 1.4

Lane | Lanel:
Filter 1 |Synapse [, 1 1.3
Lane Lanel —1 —1 L |
SB entry =~ To NBout 1 1.
From subunit 1 .
1.0

[Albericio et al., ISCA 2016] © Talex google nin vggl9 cnnM cnns

February, 2018 ISSCC Short Course 85 of 105

o))
W

9]
)
)
=N
y y
x x
A
ﬂ
©
Speedup

N

=

Pruning Activations

Remove small activation values
Speed up 11% (ImageNet)

= @ alex ¢ ¢ google e @ nin o o vggl9 a4 A cnnM v v cnnS

070 o ! T T T T -
o Do o .
<&
%, « Chnvlutin
OO% o
0.65+ S e
20
Q
O() Q
g A—XA v vv vg o
5 0.60 % 7Yy
5 * T
< A, A ®
B—a o
.I.” A, & v v v
o—o0 - @
0.55} L e *
! (o]
o. \ A
o. - . v
O ‘- ?
0.50 1 L L ; 1 . L 1 I .
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Speedup

Reduce power 2x (MNIST)

Operations Pruned (%)

Zeros

Minerva |

Small Non-zeros

Count (millions)
= W 01 N ©

0 1 2 3 4 5

Activity Value
100 —— 100
80} X 180
o0, ' Optimal 160
40 t \Bypass 40
20| :Thf&ShO'd — Error 120
0 ' : : : 0
0 1 2 3 4 5

Bypass Value

Prediction Error (%)

February, 2018

[Albericio et al., ISCA 2016] SSCC Short Course

[Reagen et al., ISCA 2016]

86 of 105

Pruning — Make Weights Sparse

Optimal Brain Damage 16.
[Lecun et al., NIPS 1989]
1. Choose a reasonable network 144
architecture 121
2. Train network until reasonable 104
solution obtained 5_; 8--retraining
3. Compute the second derivative for S 6.
each weight %0 4]
4. Compute saliencies (i.e. impact on — 2] M
training error) for each weight 0l
5. Sort weights by saliency and delete -2 : : : : :
low-saliency weights 0 500 1000 1500 2000 2500
Parameters

6. Iterate to step 2

February, 2018 ISSCC Short Course 87 of 105

Pruning — Make Weights Sparse

Prune based on magnitude of weights

before pruning after pruning [)

Train Connectivity

pruning _ _ > ~ G <
synapses - ~

Prune Connections K2\
\§ J

@

[Train Weights [/
J

pruning .
neurons

\

Example: AlexNet

Weight Reduction: CONV layers 2.7x, FC layers 9.9x

(Most reduction on fully connected layers)

Overall: 9x weight reduction, 3x MAC reduction [Han et al., NIPS 2015]

February, 2018 ISSCC Short Course 88 of 105

Compression of Weights & Activations

« Compress weights and activations between DRAM and accelerator
« Variable Length / Huffman Coding

Example:
Value: 16°’b0 - Compressed Code: {1’b0}

Value: 16’bx - Compressed Code: {1’b1, 16’bx}
« Tested on AlexNet = 2x overall BW Reduction

Laver Filter / Image Filter / Image 10/ Hllﬂ.l() Voltage MMACs/ Power Real
g bits (0%) BW Reduc. (MB/frame) (V) Frame (mW) (TOPS/W)
General CNN | 16 (0%) / 16 (0%) 1.0x 1.1 - 288 0.3
AlexNet 11 7 21%) 1 4 (29%) 1.17x/ 1.3x 1/0.77 0.85 105 85 0.96
AlexNet 12 7 (19%) 1 7 (89%) 1.15x / 5.8x 3.2/ 1.1 0.9 224 55 1.4
AlexNet 13 8 (11%) /9 (82%) 1.05x / 4.1x 6.5/28 0.92 150 77 0.7
AlexNet 14 9 (04%) 1 8 (72%) 1.00x / 2.9x 54/3.2 0.92 112 95 0.56
AlexNet 15 9 (04%) 1 8 (72%) 1.00x / 2.9x 3.7 /2.1 0.92 75 95 0.56
Total / avg. —_ — 19.8 7/ 10 — — 76 0.94
LeNets 11 | 3 35%) 7 1 (87%) 1.40x 7 5.2x Do 0.7 03 35 .07 [MOOHS et al., VLSI 2016;
LeNet-5 12 4 (26%) 1 6 (55%) 1.25x / 1.9x 0.050 7 0.042 0.8 1.6 35 575
Total / avg. —_ —_ 0.053 7 0.043 — — 33 1.6 Han et al! ICLR 201 6]

February, 2018 ISSCC Short Course 89 of 105

Key Metrics for Embedded DNN

* Accuracy =2 Measured on Dataset
» Storage Footprint 2 Number of Weights
* Speed 2 Number of MACs

* Energy =2 ?

February, 2018 ISSCC Short Course 90 of 105

Energy-Evaluation Methodology

) &

CNN Shape Configuration
(# of channels, # of filters, etc.)

Hardware Energy Costs of each
MAC and MemoryI Access

acc. at mem. level 1
acc. at mem. level 2

Memory Accesses

Optimization # acc. at mem. level n E jata

of MACs # of MACs Ec_pm_n 9
T_ Calculation
‘ v
CNN Weights and Input Data Energy T —
[0.3,0,-04,0.7,0,0,0.1, ...] RN 13 >
[Yang et al., CVPR 2017] CNN Energy Consumption

February, 2018 ISSCC Short Course 91 of 105

Energy Estimation Tool

Website: https://energyestimation.mit.edu/ Input DNN Configuration File

Layer_Index, Input_Feature_Map,Output_Feature_Map,Weight,Computation
1,161226686.785535,323273662,88858340.625,582908651

Deep Neural Network Energy Estimation Tool 2,635408403.7543396,19184256.68408292,4778357.52868125,32633087.58868125
3,26787638.8555562,39583335.5555542,3272222.77777708,2285942.77777788
4,26018817.2746958,48841522.80819458,15927826.1926336,7847418.86763958
5,62285050.8236438,49433953.294575,4188476.6472875,3227376.6472875

Overview 6,27267689.7685187,45381705.7407417,37498581.22372417,2666586.28372417
7,26787131.0480146,48586452.3413917,16216779.2956958,8136371.17869583

This Deep Neural Network Energy Estimation Tool is used for evaluating and designing energy-efficient deep neural
networks that are critical for embedded deep learning processing. Energy estimation was used in the development of
the energy-aware pruning metheod (Yang et al., CVPR 2017), which reduced the energy consumption of AlexNet and
GoogleNet by 3.7x and 1.6x, respectively, with less than 1% top-5 accuracy loss. This website provides a simplified

versicn of the energy estimation tool for shorter runtime (around 10 seconds). O utput D N N e nergy b rea kd own ac ross Iaye rs

Input ~108
T T T T T
To support the variety of toclboxes, this tocl takes a single network configuration file. The network configuration file is 6 I Input Feature Map T
a txt file, where each line denotes the configuration of a CONV/FC layer. The format of each line is: [Output Feature Map
[T weight
[] Computation
height nChannels nZercEntries V' bottom right
l width lnMapsOrFilts bitwidth l x top l Ieftl
+ + + ¥ +
2,27,27,96,44,3.5731e405,16,5,5,48,256,0,16,27,27,256,44,6.623e+06,16,1,1,2,2,2,2
L1 Il Il | — | I
Layer_Index Conf_ifMap Conf_Filt Conf_OfMap Stride Padding

e Laver Index: the index of the layer, from 1 to the number of layers. It should be the same as the line number.

e Conf IfMap, Conf Filt, Conf OfMap: the configuration of the input feature maps, the filters and the output feature
maps. The configuration of each of the three data types is in the format of "height width number_of_channels
number_of_maps_or_filts number_of_zero_entries bitwidth_in_bits".

e Stride: the stride of this layer. It is in the format of "stride_y stride_x".

e Pad: the amount of input padding. It is in the format of "pad_top pad_bottom pad_left pad_right".

Normalized Energy Consumption

Therefore, there will be 25 entries separated by commas in each line.

Running the Estimation Model

After creating your text file, follow these steps to upload your text file and run the estimation model:

1. Check the "l am not a robot"” checkbox and complete the Google reCAPTCHA challenge. Help us prevent spam. Layer Index
2. Click the "Choose File™ button below to choose your text file from your computer.

3. Click the "Run Estimation Model” button below to upload your text file and run the estimation model. [Yang et aI CVP R 20 1 7]
")
February, 2018 ISSCC Short Course 92 of 105

Key Observations

* Number of weights alone is not a good metric for energy

* All data types should be considered

Computation
10% Input Feature Map
25%

Weights
Energy Consumption 22%

of GooglLeNet

[Yang et al., CVPR 2017]

February, 2018 ISSCC Short Course 93 of 105

Energy Consumption of Existing DNNs

93%

91% ResNet-50 ®
> . VGG-16
© ° ® GoogleNet ®
g 87%
2 85%
2

83%

81% AlexNet @ @SqueezeNet

79%

77%

5E+08 5E+09 5E+10

Normalized Energy Consumption

@ Original DNN [Yang et al., CVPR 2017]

Deeper CNNs with fewer weights do not necessarily consume less energy

than shallower CNNs with more weights
February, 2018 ISSCC Short Course 94 of 105

Magnitude-based Weight Pruning

93%
19 ResNet-50 @
- 1% VGG-16
(8
: 89% ® GoogleNet e
g 87%
2 85%
° (o)
= 83% SqueezeNet
A

81% A AlexNet @ @SqueezeNet

799%, AlexNet

77%

5E+08 5E+09 5E+10
Normalized Energy Consumption
@® QOriginal DNN A Magnitude-based Pruning [Han et al., NIPS 2015]

Reduce number of weights by removing small magnitude weights

February, 2018

ISSCC Short Course

95 of 105

Energy-Aware Pruning

93%
0 ResNet-50 @
- 1% VGG-16
(S}
c 89% ® GoogleNet ®
§ 379% GoogleNet B
<
"3_ 85%
o
F 83% <1 74X SqueezeNet
A
81% 4 AlexNet @ ®SqueezeNet
799% AlexNet ® AlexNet SqueezeNet
77%
5E+08 5E+09 5E+10
Normalized Energy Consumption [Yang et al., CVPR 2017]
® Original DNN A Magnitude-based Pruning B Energy-aware Pruning (This Work)

Remove weights from layers in order of highest to lowest energy 3.7x

- reduction in AlexNet / 1.6x reduction in GooglLeNet

A I JTTITVIEL U oG 05

Network Architecture Design

Build Network with series of Small Filters

5x5 filter
GoogleNet/
Inception v3
x5 filter
VGG-16

5x1 filter
1x5 filter
decompose
| separable
filters

Two 3x3 filters

decompose .

Apply sequentially

Apply sequentially

February, 2018

ISSCC Short Course

97 of 105

Bottleneck in Popular DNN models

Reduce size and computation with 1x1 Filter (bottleneck)

I 256-d
compress ,L
1x1, 64
i Fefa
ResNet 3x3, 64
I relu
1x1, 256
expand
Fitlter ;
_—7
3x3 convolutions 5x5 convolutions 1x1 convolutions
G Oogl e N et 1x1 convolutions 2 = 4
1x1 convolutions 1x1 convolutions 3x3 max pooling
—— = — —
Previous layer CO m p reSS

February, 2018 ISSCC Short Course 98 of 105

SqueezeNet

Reduce weights by reducing number of input channels by

ﬂ o2 “squeezing” with 1x1
50x fewer weights than AlexNet

(no accuracy loss)

=" Fire Module

1000

global avgpool

"labrador
retriever

dog™ [landola et al., ICLR 2017]
February, 2018 ISSCC Short Course 99 of 105

SqueezeNet

Deeper CNNs with fewer weights do not necessarily consume
less energy than shallower CNNs with more weights

5 8
20 800 x10 60 x10
................. 1.3x
15 2.3X‘ 600 40 e mmass
10 400
....... 51.8x
200 20
0 0
AlexNet SqueezeNet AlexNet SqueezeNet AlexNet SqueezeNet
of Layers # of Weights Normalized

Energy

Measured with energy estimation tool: http://energyestimation.mit.edu

February, 2018 ISSCC Short Course

100 of 105

Opportunities in Advanced

Technologies

SSSSSSSSSSSSSSSS

Advanced Memory Technologies

Many new memories and devices explored to reduce data movement

Stacked DRAM

Global
datal ne ‘“
B

ank

(7]
o
8
%
H
«

s/ /m;fo-e L g [o
T 5 design

(Channel)

[Gao et al., Tetris, ASPLOS 2017]
[Kim et al., NeuroCube, ISCA 2016]

eDRAM
[Chen et al., DaDianNao, MICRO 2014]

Non-Volatile Resistive

Memories

ws
dataflow

=1 +1,
=V,;xG, + V,xG,
[Shafiee et al., ISCA 2016]
[Chi et al., PRIME, ISCA 2016]

February, 2018 ISSCC Short Course

102 of 105

Summary

* DNNs are a critical component in the Al revolution, delivering record
breaking accuracy on many important Al tasks for a wide range of
applications; however, it comes at the cost of high computational complexity

* Efficient processing of DNNs is an important area of research with many
promising opportunities for innovation at various levels of hardware design,
including algorithm co-design

 When considering different DNN solutions it is important to evaluate with
the appropriate workload in term of both input and model, and recognize

that they are evolving rapidly.

* |t's important to consider a comprehensive set of metrics when evaluating
different DNN solutions: accuracy, speed, energy, and cost

February, 2018 ISSCC Short Course 103 of 105

References

Overview Paper

V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, “Efficient Processing of Deep Neural
Networks: A Tutorial and Survey,” Proceedings of the IEEE, December 2017
https://arxiv.org/pdf/1703.09039.pdf

More info about Eyeriss and Tutorial on DNN Architectures at
http://eyeriss.mit.edu

MIT Professional Education Course on “Designing Efficient Deep Learning
Systems” March 28 — 29, 2018 in Mountain View, CA
http://professional-education.mit.edu/deeplearning

For updates | 2 o) [VAGLT T

http://mailman.mit.edu/mailman/listinfo/eems-news

February, 2018 ISSCC Short Course 104 of 105

Acknowledgements

Research conducted in the MIT
Energy-Efficient Multimedia Systems
Group would not be possible without

the support of the following
organizations:

Y
ANALOG)
3M D DEVICES .BRearcom.
. <2
G o gl e <|@ |1<\I%A

Al rH tH nn
: {? TEXAS t@g
Q UALCOMWA® INSTRUMENTS Ui

(/

February, 2018 ISSCC Short Course 105 of 105

