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Deep Convolutional NN Explanation

Modern Deep CNN: 5 — 152 Layers
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Deep Convolutional NN Explanation

Modern Deep CNN: 5 — 152 Layers
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Convolution

Input Image (Feature Map)
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Convolution
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Convolution
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Why Not Use # of Weights or MACs?
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Why Not Use # of Weights or MACs?

Memory Read MAC Memory Write
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Why Not Use # of Weights or MACs?
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Why Not Use # of Weights or MACs?
Memory Read MAC Memory Write
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Extra levels of local memory hierarchy

Reason 1. computation is cheap but data movement is expensive
Reason 2: where data come from/go to is important for energy

Normalized Enerqy Cost”
ALUT B 1x (Reference)

0.5-1.0 k8 I G—{AI]
PE——(&D]
100 - 500 kB [ENiCg—(ALL

@

* measured from a commercial 65nm process




Energy Estimation
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Energy Estimation Methodology

« Estimate the energy consumption of each layer separately

* For each layer, Ejyyer
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Energy Estimation Methodology

« Estimate the energy consumption of each layer separately

- For each layer, Ejgyer =|Ecomp[HEdata
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Energy Estimation Methodology

« Estimate the energy consumption of each layer separately

- For each layer, Ejgyer =|Ecomp[HEdata

Data energy does NOT only
depend on the # of MACs
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Factor in Bitwidth

Data energy:

« Consider bitwidths in the optimization
« Scale # of bits linearly with the bitwidth
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Factor in Sparsity

Apply Non-Linearity RelLLU on Filtered Image Data
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Factor in Sparsity

Use data compression to reduce
the # of bits accessed

ﬁ / ﬁ # of bits accessed
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Insights



Example Platform

Everiss [isscc, 2016]

A reconfigurable CNN processor

35fps @ 278 mW~
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Key Insights

Convolutional layers consume more energy than fully-

connected layers

Normalized Energy
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Key Insights

Deeper CNNs with fewer weights do not necessarily consume
less energy than shallower CNNs with more weights

x10° x108
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2.3X
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AlexNet  SqueezeNet AlexNet SqueezeNet AlexNet  SqueezeNet
# of Layers # of Weights Normalized Energy

SqueezeNet: F. N. landola et al., “SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and <0.5MB model size,” arXiv:1602.07360, 2016.
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Key Insights

Data movement is more expensive than computation

Feature maps need to be taken into account

Computation 10% Feature Map 68%

GooglLeNet Energy Breakdown
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Application



Energy-Aware Pruning (EAP)

« Use estimated energy to guide the layer-by-layer pruning

« Start from pruning the layers that consume the most of energy

Sort Layers Remove
Based on Weights
Output Energy ~Qutput
~Qutput
L2 L1 w3
Energy
Input T = 5 Input
L1L2L3
Input

T.-J. Yang et al., “Designing Energy-Efficient Convolutional Neural
Networks using Energy-Aware Pruning,” CVPR, July 2017.
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Energy-Aware Pruning (EAP)

We remove the weights having the smallest joint impact on
the output instead of the small magnitude weights

Magnitude-based Method
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Pruned Result Analysis

« EAP reduces AlexNet energy by 3.7x and outperforms the
previous work by 1.7x

 Energy is more difficult to reduce than # of weights and

MACs
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DC: S. Han et al., “Deep Compression: Compressing Deep Neural Networks with
i Pruning, Trained Quantization and Huffman Coding,” in ICLR, 2016.
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Network Comparison

Energy-aware pruning achieves better trade-off
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Summary

* We proposed an energy estimation methodology
of DNNs based on the architecture, bitwidth and
sparsity

 \We showed that

— # of weights and MACs are not good metrics for energy
— data movement is more expensive than computation
— feature maps need to be taken into account

» Better accuracy-energy trade-off can be achieved

by combining the energy estimation methodology
with pruning



Thank You

Learn more about energy-aware pruning at
http://eyeriss.mit.edu/energy.html

Learn more about efficient neural networks at
https://arxiv.org/abs/1703.09039
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