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Algorithm EvaluationMotivation
• Time-of-flight (TOF) cameras are useful in many mobile 

applications (e.g. augmented reality, robot navigation) but its 
illumination source limits battery life
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Depth Map Estimation Algorithm

1. Optical Flow Estimation – Perform block matching at a 
sparse set of points

2. Rigid Body Motion Estimation – Use RANSAC to iteratively 
sample optical flow vectors to estimate the rigid body motion

3. Depth Map Reprojection

Rigid Body Motion Estimation
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3D motion of objects captured by 2D 
optical flow 
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Rigid body motion is linear and parameterized 
by translation, 𝑡, and angular velocity, 𝜔

3D rigid body motion, 𝑡	and	𝜔, can be estimated using 2D 
optical flow using linear least squares   
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1. Get 3D point for each pixel using previous depth map
2. Move each point using rigid body motion
3. Project the Z-coordinate to get new depth map
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• Sequentially estimate depth map for sequences from [1] 
• Evaluate using mean relative error (MRE): <==
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where 𝑁 is the number of pixels, 𝑍"F is the estimated depth for 
the 𝑖th pixel, and 𝑍" is the ground truth depth

• Achieves median MRE of 0.85% and outperforms competing 
schemes (Copy and Transfer)

• Runs at 30 FPS on the Cortex-A7 cores 
of Odroid-XU3 board [2] (same CPU as 
Samsung Galaxy S5 octa-core)

• Board Power: 0.68 W vs 5 W for TOF 
illumination source
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Key Contribution Lower the power of TOF imaging by 3X
while maintaining MRE of 0.85%

Computation Time Breakdown

• Our algorithm minimizes the on time of TOF cameras by 
estimating depth for rigid objects in real-time on a mobile CPU

Microsoft Hololens. https://www.microsoft.com/en-
us/hololens

DJI Phantom 3 SE. https://www.dji.com/products/drones
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Robot Arm. https://theawesomer.com/darth-
vader-robot-arm/16840/
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