http://eyeriss.mit.edu/energy.htmi

CNN — Accurate but High Energy Consumption

* High energy consumption hinders CNN deployment on battery-powered devices

* WWe propose an energy-aware pruning algorithm for CNNs that directly targets
energy rather than number of weights

« We perform energy analysis on various CNNs and provide insights

* The tool is available
on the website

Energy Estimation Methodology

* Energy consumption: a combination of # of memory accesses and # of MACs
(energy model from hardware measurements?*)

* Energy model considers bit-width and sparsity, as well as all data types (weights
and feature maps)
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Energy Consumption Analysis of CNNs

* Number of weights is not a good estimator of energy

« Example 1: CONV layers consume more energy than FC layers

« Example 2: deeper CNNs with fewer weights do not necessarily consume less
energy than shallower CNNs with more weights
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Energy-Aware Pruning Algorithm

» Reduce the energy consumption by pruning Y
a network A - A
* Focus on minimizing the output error instead A

of the filter error
Input Model

Use the estimated energy to guide the
pruning algorithm
(1) Determine Order of Layers Based on Energy
a Quickly remove weights
(2) Remove Weights Based on Magnitude
(3) Restore Weights to Reduce Output Error
(4) Fine-tune Weights Locally

Other Unpruned Layers?

Restore weights to minimize the

output feature map error:
A’ = arg min||Y — XA||?,
A

subject to ||All, < ¢

Update the remaining weights (A.’) by

solving the least-square problem:
As' = arg min||Y — XAq||5
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Reducing Number of Target Classes

« Key observation: by reducing the number of target classes on AlexNet,
the model size Is greatly reduced but the energy reduction is limited
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3.7x and 1.6x energy reduction
10.6x and 3.0x number of non-zero weights reduction
6.6x and 3.4x number of non-skipped MACs reduction

Normalized
Energy (%10°)

Top-5 # of Non-zero
Accuracy Weights (x10°)

# of Non-skipped

ol MACs (%108 )

AlexNet

0 0 0 0
(Original) 80.43% 60.95 (100%) 3.71 (100%) 3.97 (100%)

AlexNet

(OC) 80.37% 6.79 (11%) 1.79 (48%) 1.85  (47%)

AlexNet

0 0 0 0
(This Work) | 79-56% 5.73 (9%) 0.56 (15%) 1.06  (27%)

GooglLeNet

0 0 0 0
(Original) 88.26% 6.99 (100%) 7.41 (100%) 7.63 (100%)

GooglLeNet

0 0 0 0
(This Work) | 87-28% 2.37 (34%) 2.16 (29%) 476  (62%)

« DC =S. Han et al., "Deep Compression: Compressing Deep Neural Networks with Pruning,
Trained Quantization and Huffman Coding," in ICLR, 2016
« Energy-aware pruned models available for download from the website

Network Comparison (Energy vs. Accuracy)

* QOur pruned networks achieve better accuracy-energy trade-off
* Feature maps need to be factored in when estimating energy
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