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CNN – Accurate but High Energy Consumption

• High energy consumption hinders CNN deployment on battery-powered devices

• We propose an energy-aware pruning algorithm for CNNs that directly targets 

energy rather than number of weights

• We perform energy analysis on various CNNs and provide insights

Energy Estimation Methodology

• Energy consumption: a combination of # of memory accesses and # of MACs 

(energy model from hardware measurements*)

• Energy model considers bit-width and sparsity, as well as all data types (weights 

and feature maps)
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Energy-Aware Pruning Algorithm

• Reduce the energy consumption by pruning 

a network

• Focus on minimizing the output error instead 

of the filter error

X

A

Y

A’

Pruning Results for AlexNet and GoogLeNet

• 3.7x and 1.6x energy reduction

• 10.6x and 3.0x number of non-zero weights reduction

• 6.6x and 3.4x number of non-skipped MACs reduction

Model
Top-5

Accuracy

# of Non-zero

Weights (×106 )

# of Non-skipped

MACs (×108 )

Normalized 

Energy (×109 )

AlexNet

(Original)
80.43% 60.95 (100%) 3.71 (100%) 3.97 (100%)

AlexNet

(DC)
80.37% 6.79 (11%) 1.79 (48%) 1.85 (47%)

AlexNet

(This Work)
79.56% 5.73 (9%) 0.56 (15%) 1.06 (27%)

GoogLeNet

(Original)
88.26% 6.99 (100%) 7.41 (100%) 7.63 (100%)

GoogLeNet

(This Work)
87.28% 2.37 (34%) 2.16 (29%) 4.76 (62%)

• DC = S. Han et al., "Deep Compression: Compressing Deep Neural Networks with Pruning, 

Trained Quantization and Huffman Coding," in ICLR, 2016

• Energy-aware pruned models available for download from the website

Network Comparison (Energy vs. Accuracy)

• Our pruned networks achieve better accuracy-energy trade-off

• Feature maps need to be factored in when estimating energy
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Energy Consumption Analysis of CNNs

• Number of weights is not a good estimator of energy

• Example 1: CONV layers consume more energy than FC layers

• Example 2: deeper CNNs with fewer weights do not necessarily consume less 

energy than shallower CNNs with more weights

GoogLeNet Energy

Layer # Weights Energy

CONV 4% 73%

FC 96% 27%

AlexNet

Network # Weights Energy

AlexNet 61M 4G

GoogLeNet 7M 8G

AlexNet vs. GoogLeNet

Reducing Number of Target Classes

Use the estimated energy to guide the 

pruning algorithm
① Determine Order of Layers Based on Energy

② Remove Weights Based on Magnitude

③ Restore Weights to Reduce Output Error

④ Fine-tune Weights Locally

Other Unpruned Layers?

⑤ Fine-tune Weights Globally
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Quickly remove weights

Restore weights to minimize the 

output feature map error:

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴 0 ≤ 𝑞

𝐴′ = arg min
𝐴

𝑌 − 𝑋𝐴 𝑝
𝑝
,

Update the remaining weights (AS’) by 

solving the least-square problem: 
𝐴𝑆

′ = arg min
𝐴𝑆

𝑌 − 𝑋𝑆𝐴𝑆 2
2

𝐴𝑆𝐶
′ = 0

• Key observation: by reducing the number of target classes on AlexNet,

the model size is greatly reduced but the energy reduction is limited

# of Weights # of MACs Estimated Energy

http://eyeriss.mit.edu/energy.html

* The tool is available

on the website

* Eyeriss (CNN accelerator)
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SqueezeNet has 50x less 

weights than AlexNet, but 

more feature maps


