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Approaches 

•  Reduce size of operands for storage/compute 
–  Floating point à Fixed point 
–  Bit-width reduction 
–  Non-linear quantization 

 
•  Reduce number of operations for storage/compute 

–  Exploit Activation Statistics (Compression) 
–  Network Pruning 
–  Compact Network Architectures 
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Cost of Operations 
Operation: Energy 

(pJ) 
8b Add 0.03 
16b Add 0.05 
32b Add 0.1 
16b FP Add 0.4 
32b FP Add 0.9 
8b Mult 0.2 
32b Mult 3.1 
16b FP Mult 1.1 
32b FP Mult 3.7 
32b SRAM Read (8KB) 5 
32b DRAM Read 640 

Area 
(µm2) 

36 
67 

137 
1360 
4184 
282 

3495 
1640 
7700 
N/A 
N/A 

[Horowitz, “Computing’s Energy Problem (and what we can do about it)”, ISSCC 2014]  

Relative Energy Cost 

1 10 102 103 104 

Relative Area Cost 

1 10 102 103 
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Number Representation 

FP32 
 
 
FP16 
 
 
Int32 
 
 
Int16 
 
 
Int8 

S E M 
1 8 23 

S E M 
1 5 10 

M 
31 

S 

S M 

1 

1 15 

S M 
1 7 

Range Accuracy 

10-38 – 1038  .000006% 

6x10-5 - 6x104  .05% 

0 – 2x109 ½ 

0 – 6x104 ½ 

0 – 127 ½ 

Image Source: B. Dally 
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Floating Point à Fixed Point 

1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 32-bit float 

exponent (8-bits) mantissa (23-bits) sign 

8-bit  
fixed 

0 1 1 0 0 1 1 0 

sign 

integer  
(4-bits) 

mantissa (7-bits) 

fractional 
(3-bits) 

e = 70 s = 1 m = 20482 -1.42122425 x 10-13 

s = 0 12.75 m=102 

Floating Point 

Fixed Point 
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N-bit Precision 

Accumulate + 

Weight  
(N-bits) 

Activation  
(N-bits) 

N x N 
multiply 

2N-bits 

2N+M-bits 

Output 
(N-bits) 

Quantize 
to N-bits 

For no loss in precision, M is determined based on largest 
filter size (in the range of 10 to 16 bits for popular DNNs) 
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Dynamic Fixed Point 

1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 32-bit float 

exponent (8-bits) mantissa (23-bits) sign 

8-bit  
dynamic  

fixed 

0 1 1 0 0 1 1 0 

sign 

integer  
([7-f ]-bits) 

mantissa (7-bits) 

fractional 
(f-bits) 

e = 70 s = 1 m = 20482 -1.42122425 x 10-13 

f = 3 s = 0 12.75 m=102 

8-bit  
dynamic  

fixed 

0 1 1 0 0 1 1 0 

sign mantissa (7-bits) 

fractional 
(f-bits) 

f = 9 s = 0 0.19921875 m=102 

Allow f to vary based on data type and layer 

Floating Point 

Fixed Point 
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Impact on Accuracy 

[Gysel et al., Ristretto, ICLR 2016] 

w/o fine tuning 

Top-1 accuracy 
on of CaffeNet 
on ImageNet 
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Avoiding Dynamic Fixed Point 

AlexNet 
(Layer 6) 

Image Source: Moons 
et al, WACV 2016 

Batch normalization ‘centers’ dynamic range 

‘Centered’ dynamic ranges might reduce need for 
dynamic fixed point 
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Nvidia PASCAL 

“New half-precision, 16-bit 
floating point instructions 
deliver over 21 TeraFLOPS for 
unprecedented training 
performance. With 47 TOPS 
(tera-operations per second) 
of performance, new 8-bit 
integer instructions in Pascal 
allow AI algorithms to deliver 
real-time responsiveness for 
deep learning inference.”  
 
– Nvidia.com (April 2016) 
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Google’s Tensor Processing Unit (TPU) 

“ With its TPU Google has 
seemingly focused on delivering 
the data really quickly by cutting 
down on precision. Specifically, 
it doesn’t rely on floating point 
precision like a GPU  
…. 
Instead the chip uses integer 
math…TPU used 8-bit integer.” 
 
- Next Platform (May 19, 2016) 

[Jouppi et al., ISCA 2017] 
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Precision Varies from Layer to Layer 

[Moons et al., WACV 2016] [Judd et al., ArXiv 2016] 
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Bitwidth Scaling (Speed) 
Bit-Serial Processing: Reduce Bit-width à Skip Cycles 

Speed up of 2.24x vs. 16-bit fixed 

[Judd et al., Stripes, CAL 2016] 
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Bitwidth Scaling (Power) 

[Moons et al., VLSI 2016] 

Reduce Bit-width à 
Shorter Critical Path 
à Reduce Voltage 

Power reduction of 
2.56x vs. 16-bit fixed 
On AlexNet Layer 2 
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Binary Nets 

•  Binary Connect (BC) 
–  Weights {-1,1}, Activations 32-bit float 

–  MAC à addition/subtraction 

–  Accuracy loss: 19% on AlexNet 

 

•  Binarized Neural Networks (BNN) 
–  Weights {-1,1}, Activations {-1,1} 

–  MAC à XNOR 

–  Accuracy loss: 29.8% on AlexNet 

 

Binary Filters 

[Courbariaux, arXiv 2016] 

[Courbariaux, NIPS 2015] 
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Scale the Weights and Activations  

[Rastegari et al., BWN & XNOR-Net, ECCV 2016] 

•  Binary Weight Nets (BWN) 
–  Weights {-α, α} à except first and last layers are 32-bit float 
–  Activations: 32-bit float 
–  α determined by the l1-norm of all weights in a layer 
–  Accuracy loss: 0.8% on AlexNet 

•  XNOR-Net 
–  Weights {-α, α} 
–  Activations {-βi, βi} à except first and last layers are 32-bit float 
–  βi determined by the l1-norm of all activations across channels 

for given position i of the input feature map  
–  Accuracy loss: 11% on AlexNet 
 
 

 

Hardware needs to support 
both activation precisions 

Scale factors (α, βi) can change per layer or position in filter 
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XNOR-Net 

[Rastegari et al., BWN & XNOR-Net, ECCV 2016] 
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Ternary Nets 

•  Allow for weights to be zero 
–  Increase sparsity, but also increase number of bits (2-bits) 

 

•  Ternary Weight Nets (TWN) 
–  Weights {-w, 0, w} à except first and last layers are 32-bit float 
–  Activations: 32-bit float 

–  Accuracy loss: 3.7% on AlexNet 

•  Trained Ternary Quantization (TTQ) 
–  Weights {-w1, 0, w2} à except first and last layers are 32-bit float 
–  Activations: 32-bit float 

–  Accuracy loss: 0.6% on AlexNet 

[Li et al., arXiv 2016] 

[Zhu et al., ICLR 2017] 
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Non-Linear Quantization 

•  Precision refers to the number of levels  
–  Number of bits = log2 (number of levels) 

•  Quantization: mapping data to a smaller set of levels 
–  Linear, e.g., fixed-point 
–  Non-linear 

•  Computed 
•  Table lookup 

Objective: Reduce size to improve speed and/or reduce energy 
while preserving accuracy 
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Computed Non-linear Quantization  
 

Log Domain Quantization 

Product = X << W Product =  X * W 

[Lee et al., LogNet, ICASSP 2017] 
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Log Domain Computation 

Only activation 
in log domain 

Both weights 
and activations 
in log domain 

[Miyashita et al., arXiv 2016] 

max, bitshifts, adds/subs 
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Log Domain Quantization 
•  Weights: 5-bits for CONV, 4-bit for FC; Activations: 4-bits 
•  Accuracy loss: 3.2% on AlexNet 

 

[Miyashita et al., arXiv 2016], 
[Lee et al., LogNet, ICASSP 2017] 

Shift and Add 

WS 
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Reduce Precision Overview 

•  Learned mapping of data to quantization levels   
(e.g., k-means) 

•  Additional Properties 
–  Fixed or Variable (across data types, layers, channels, etc.) 

[Han et al., ICLR 2016] 

Implement with 
look up table 
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Non-Linear Quantization Table Lookup 
Trained Quantization: Find K weights via K-means clustering 

 to reduce number of unique weights per layer (weight sharing) 

[Han et al., Deep Compression, ICLR 2016] 

Weight 
Decoder/
Dequant 
U x 16b 

Weight  
index 

(log2U-bits) 
Weight  

(16-bits) 
Weight  
Memory 
CRSM x 

log2U-bits 
Output 

Activation 
(16-bits) 

  
  

  
  

MAC 

Input 
Activation  
(16-bits) 

Example: AlexNet (no accuracy loss) 
256 unique weights for CONV layer 

16 unique weights for FC layer 

Does not reduce 
precision of MAC 

Overhead 
Smaller Weight 

Memory 

Consequences: Narrow weight memory and second access from (small) table 
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Summary of Reduce Precision 
Category Method Weights  

(# of bits) 
Activations 
(# of bits) 

Accuracy Loss vs. 
32-bit float (%) 

Dynamic Fixed 
Point 

w/o fine-tuning 8 10 0.4 
w/ fine-tuning 8 8 0.6 

Reduce weight Ternary weights 
Networks (TWN) 

2* 32 3.7 

Trained Ternary 
Quantization (TTQ) 

2* 32 0.6 

Binary Connect (BC) 1 32 19.2 
Binary Weight Net 
(BWN) 

1* 32 0.8 

Reduce weight 
and activation 

Binarized Neural Net 
(BNN) 

1 1 29.8 

XNOR-Net 1* 1 11 
Non-Linear LogNet 5(conv), 4(fc) 4 3.2 

Weight Sharing 8(conv), 4(fc) 16 0 

* first and last layers are 32-bit float 

Full list @ [Sze et al., arXiv, 2017] 
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Reduce Number of Ops and Weights 

•  Exploit Activation Statistics 
•  Network Pruning 
•  Compact Network Architectures 
•  Knowledge Distillation 
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Sparsity in Fmaps 

9 -1 -3 
1 -5 5 
-2 6 -1 

Many zeros in output fmaps after ReLU 
ReLU 9 0 0 

1 0 5 
0 6 0 

0 

0.2 

0.4 

0.6 

0.8 

1 

1 2 3 4 5 
CONV Layer 

# of activations # of non-zero activations 

(Normalized) 
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… 

… 

… 

… 
…

 

…
 

ReLU 

Input Image 

Output Image 

Filter Filt 

Img 

Psum 

Psum 

Buffer 
SRAM 

 
108KB 

14×12 PE Array 

  
  

Link Clock  Core Clock  

I/O Compression in Eyeriss 

Run-Length Compression (RLC)  

Example: 

Output (64b): 

Input:  0, 0, 12, 0, 0, 0, 0, 53, 0, 0, 22, … 

5b 16b 1b 5b 16b 5b 16b 
2 12 4 53 2 22 0 

Run Level Run Level Run Level Term 
  

Off-Chip DRAM 
64 bits 

Decomp 

Comp 

[Chen et al., ISSCC 2016] 

DCNN Accelerator 
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Compression Reduces DRAM BW 

0	

1	

2	

3	

4	

5	

6	

1	 2	 3	 4	 5	

DR
AM

	A
cc
es
s	(
M
B)
	

AlexNet	Conv	Layer	

Uncompressed	 Compressed	

1 2 3 4 5 
AlexNet Conv Layer 

DRAM  
Access  

(MB)  

0 

2 

4 

6 
1.2× 

1.4× 
1.7× 

1.8× 
1.9× 

Uncompressed 
Fmaps + Weights 

RLE Compressed 
Fmaps + Weights 

[Chen et al., ISSCC 2016] 

Simple RLC within 5% - 10% of theoretical entropy limit 
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Data	Ga&ng	/	Zero	Skipping	in	Eyeriss	

Filter  
Scratch Pad 

(225x16b SRAM) 

Partial Sum 
Scratch Pad 

(24x16b REG) 

Filt 

Img 

Input 
Psum 

2-stage 
pipelined  
multiplier 

Output 
Psum   

0 

Accumulate 
Input Psum 

1 

0 

== 0 Zero 
Buffer 

Enable 
  

Image 
Scratch Pad 

(12x16b REG)   

  

  

0 
1 

   
  

    

  

  

    

Skip MAC and mem reads  
when image data is zero. 

Reduce PE power by 45% 

Reset 

[Chen et al., ISSCC 2016] 
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Cnvlutin 
•  Process Convolution Layers 
•  Built on top of DaDianNao (4.49% area overhead) 
•  Speed up of 1.37x (1.52x with activation pruning) 

[Albericio et al., ISCA 2016] 
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Pruning Activations 

[Reagen et al., ISCA 2016] 

Remove small activation values 

[Albericio et al., ISCA 2016] 

Speed up 11% (ImageNet) Reduce power 2x (MNIST) 

Minerva 
Cnvlutin 



33 

Pruning – Make Weights Sparse 

•  Optimal Brain Damage 
1.  Choose a reasonable network 

architecture 
2.  Train network until reasonable 

solution obtained 
3.  Compute the second derivative 

for each weight 
4.  Compute saliencies (i.e. impact 

on training error) for each weight 
5.  Sort weights by saliency and 

delete low-saliency weights 
6.  Iterate to step 2 

[Lecun et al., NIPS 1989] 

retraining 



34 

Pruning – Make Weights Sparse 

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Prune based on magnitude of weights 

7UDLQ�&RQQHFWLYLW\

3UXQH�&RQQHFWLRQV

7UDLQ�:HLJKWV

Example: AlexNet 
Weight Reduction: CONV layers 2.7x, FC layers 9.9x 
(Most reduction on fully connected layers) 
Overall: 9x weight reduction, 3x MAC reduction 

[Han et al., NIPS 2015] 
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Speed up of Weight Pruning on CPU/GPU 

Intel Core i7 5930K: MKL CBLAS GEMV, MKL SPBLAS CSRMV 
NVIDIA GeForce GTX Titan X: cuBLAS GEMV, cuSPARSE CSRMV 
NVIDIA Tegra K1: cuBLAS GEMV, cuSPARSE CSRMV 
 
Batch size = 1 

On Fully Connected Layers Only 
Average Speed up of 3.2x on GPU, 3x on CPU, 5x on mGPU 

[Han et al., NIPS 2015] 
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Key Metrics for Embedded DNN 

•  Accuracy à Measured on Dataset 
•  Speed à Number of MACs 
•  Storage Footprint à Number of Weights 
•  Energy à ? 
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Energy-Aware Pruning 

•  # of Weights alone is not a good metric for 
energy  
–  Example (AlexNet): 

•  # of Weights (FC Layer) > # of Weights (CONV layer)  
•  Energy (FC Layer) < Energy (CONV layer) 

•  Use energy evaluation method to estimate DNN 
energy 
–  Account for data movement 
 

[Yang et al., CVPR 2017] 
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Energy-Evaluation Methodology 

CNN Shape Configuration 
(# of channels, # of filters, etc.) 

CNN Weights and Input Data 

  

[0.3, 0, -0.4, 0.7, 0, 0, 0.1, …] 

CNN Energy Consumption  
L1 L2 L3 

Energy 

… 

Memory 
Accesses 

Optimization 

# of MACs 
Calculation 

  

  

  
  

…
 

# acc. at mem. level 1 
# acc. at mem. level 2 

# acc. at mem. level n 

# of MACs 

Hardware Energy Costs of each 
MAC and Memory Access 

Ecomp 

Edata 

Evaluation tool available at http://eyeriss.mit.edu/energy.html  
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Key Observations 

•  Number of weights alone is not a good metric for energy 
•  All data types should be considered  

 

Output	Feature	Map	
43%	

Input	Feature	Map	
25%	

Weights	
22%	

Computa&on	
10%	

Energy	Consump&on	
of	GoogLeNet	

[Yang et al., CVPR 2017] 
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Energy Consumption of Existing DNNs 

Deeper CNNs with fewer weights do not necessarily consume less 
energy than shallower CNNs with more weights 

AlexNet	 SqueezeNet	

GoogLeNet	

ResNet-50	
VGG-16	

77%	

79%	

81%	

83%	

85%	

87%	

89%	

91%	

93%	

5E+08	 5E+09	 5E+10	

To
p-
5	
Ac

cu
ra
cy
	

Normalized	Energy	Consump&on	

Original	DNN	
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Magnitude-based Weight Pruning 

Reduce number of weights by removing small magnitude weights 

AlexNet	 SqueezeNet	

GoogLeNet	

ResNet-50	
VGG-16	

AlexNet	

SqueezeNet	

77%	

79%	

81%	

83%	

85%	

87%	

89%	

91%	

93%	

5E+08	 5E+09	 5E+10	

To
p-
5	
Ac

cu
ra
cy
	

Normalized	Energy	Consump&on	

Original	DNN	 Magnitude-based	Pruning	[6]	[Han	et	al.,	NIPS	2015]	
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Energy-Aware Pruning 

AlexNet	 SqueezeNet	

GoogLeNet	

ResNet-50	
VGG-16	

AlexNet	

SqueezeNet	

AlexNet	 SqueezeNet	

GoogLeNet	

77%	

79%	

81%	

83%	

85%	

87%	

89%	

91%	

93%	

5E+08	 5E+09	 5E+10	

To
p-
5	
Ac

cu
ra
cy
	

Normalized	Energy	Consump&on	

Original	DNN	 Magnitude-based	Pruning	[6]	 Energy-aware	Pruning	(This	Work)	

1.74x 

Remove weights from layers in order of highest to lowest energy 
3.7x reduction in AlexNet / 1.6x reduction in GoogLeNet 

DNN Models available at http://eyeriss.mit.edu/energy.html  
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Energy Estimation Tool 
Website: https://energyestimation.mit.edu/  

Input DNN Configuration File 

Output DNN energy breakdown across layers 

[Yang et al., CVPR 2017] 
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Compression of Weights & Activations 
•  Compress weights and activations between DRAM  

and accelerator 
•  Variable Length / Huffman Coding 

•  Tested on AlexNet à 2× overall BW Reduction 

[Moons et al., VLSI 2016; Han et al., ICLR 2016] 

Value: 16’b0  à Compressed Code: {1’b0} 

Value: 16’bx  à Compressed Code: {1’b1, 16’bx} 

Example: 
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Sparse Matrix-Vector DSP 
•  Use CSC rather than CSR for SpMxV 

[Dorrance et al., FPGA 2014] 

Compressed Sparse Column (CSC)  Compressed Sparse Row (CSR)  

Reduce memory bandwidth (when not M >> N) 
For DNN, M = # of filters, N = # of weights per filter 

M 

N 
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•  Process Fully Connected Layers (after Deep Compression) 
•  Store weights column-wise in Run Length format 
•  Read relative column when input is non-zero 

~a
�

0 a1 0 a3
�

⇥ ~b
PE0

PE1

PE2

PE3

0

BBBBBBBBBBBBB@

w0,0w0,1 0 w0,3

0 0 w1,2 0

0 w2,1 0 w2,3

0 0 0 0

0 0 w4,2w4,3

w5,0 0 0 0

0 0 0 w6,3

0 w7,1 0 0

1

CCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBB@

b0
b1

�b2
b3

�b4
b5
b6

�b7

1

CCCCCCCCCCCCCA

ReLU)

0

BBBBBBBBBBBBB@

b0
b1
0

b3
0

b5
b6
0

1

CCCCCCCCCCCCCA

1

[Han et al., ISCA 2016] 

Input 

 
 
Weights 
 
 

Output 

EIE: A Sparse Linear Algebra Engine 

Dequantize Weight 

Keep track of location 

Output Stationary Dataflow  

Supports Fully Connected Layers Only 
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Sparse CNN (SCNN) 

[Parashar et al., ISCA 2017] 
Input Stationary Dataflow  

Supports Convolutional Layers 

= 

x

a

b

d

e

f 

c
y

z

xa * 

ya * 

za * 

xb * 

yb * 

zb * 

…
 

Scatter 

network 

Accumulate MULs 

PE frontend PE backend 

Densely Packed 

Storage of Weights 

and Activations 

All-to all 

Multiplication of 

Weights and Activations 

Mechanism to Add to 

Scattered Partial Sums  
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Structured/Coarse-Grained Pruning  
•  Scalpel 

–  Prune to match the underlying data-parallel hardware 
organization for speed up 

  

[Yu et al., ISCA 2017] 

Dense weights Sparse weights 

Example: 2-way SIMD 
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Compact Network Architectures 

•  Break large convolutional layers into a series 
of smaller convolutional layers 
–  Fewer weights, but same effective receptive field 
 

•  Before Training: Network Architecture Design 
 
•  After Training: Decompose Trained Filters 
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Network Architecture Design 

5x5 filter Two 3x3 filters 

decompose 

Apply sequentially 

decompose 

5x5 filter 5x1 filter 

1x5 filter 

Apply sequentially 
GoogleNet/Inception v3 

VGG-16 

Build Network with series of Small Filters 

separable  
filters 
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Network Architecture Design 

Figure Source: 
Stanford cs231n 

Reduce size and computation with 1x1 Filter (bottleneck) 

[Szegedy et al., ArXiV 2014 / CVPR 2015] 

Used in Network In Network(NiN) and GoogLeNet 
[Lin et al., ArXiV 2013 / ICLR 2014] 
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Network Architecture Design 

Figure Source: 
Stanford cs231n 

[Szegedy et al., ArXiV 2014 / CVPR 2015] 

Used in Network In Network(NiN) and GoogLeNet 
[Lin et al., ArXiV 2013 / ICLR 2014] 

Reduce size and computation with 1x1 Filter (bottleneck) 
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Network Architecture Design 

Figure Source: 
Stanford cs231n 

[Szegedy et al., ArXiV 2014 / CVPR 2015] 

Used in Network In Network(NiN) and GoogLeNet 
[Lin et al., ArXiV 2013 / ICLR 2014] 

Reduce size and computation with 1x1 Filter (bottleneck) 
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Bottleneck in Popular DNN models 

ResNet 

GoogleNet 

compress 

expand 

compress 
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SqueezeNet 

[F.N. Iandola et al., ArXiv, 2016]] 

Fire Module 

Reduce weights by reducing number of input 
channels by “squeezing” with 1x1 
50x fewer weights than AlexNet 

(no accuracy loss) 
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Energy Consumption of Existing DNNs 

Deeper CNNs with fewer weights do not necessarily consume less 
energy than shallower CNNs with more weights 

AlexNet	 SqueezeNet	

GoogLeNet	

ResNet-50	
VGG-16	

77%	

79%	

81%	

83%	

85%	

87%	

89%	

91%	

93%	

5E+08	 5E+09	 5E+10	

To
p-
5	
Ac

cu
ra
cy
	

Normalized	Energy	Consump&on	

Original	DNN	
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Decompose Trained Filters 
After training, perform low-rank approximation by applying tensor 
decomposition to weight kernel; then fine-tune weights for accuracy 

[Lebedev et al., ICLR 2015] R = canonical rank 
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Decompose Trained Filters 

[Denton et al., NIPS 2014] 

•  Speed up by 1.6 – 2.7x on CPU/GPU for CONV1, 
CONV2 layers 

•  Reduce size by 5 - 13x for FC layer  
•  < 1% drop in accuracy 

Original Approx. 
Visualization of Filters 
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Decompose Trained Filters on Phone 

[Kim et al., ICLR 2016] 

Tucker Decomposition 



60 

Knowledge Distillation 

[Bucilu et al., KDD 2006],[Hinton et al., arXiv 2015]  

&RPSOH[ 
DNN B 

(teacher) 

6LPSOH DNN 
(student) 

so
ftm

ax
 

so
ftm

ax
 

&RPSOH[ 
DNN A 

(teacher) so
ftm

ax
 

VFRUHV 
class  
probabilities 

Try to match 


