
1

DNN Model and
Hardware Co-Design

ISCA Tutorial (2017)

Website: http://eyeriss.mit.edu/tutorial.html

Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang

2

Approaches

•  Reduce size of operands for storage/compute
–  Floating point à Fixed point
–  Bit-width reduction
–  Non-linear quantization

•  Reduce number of operations for storage/compute

–  Exploit Activation Statistics (Compression)
–  Network Pruning
–  Compact Network Architectures

3

Cost of Operations
Operation: Energy

(pJ)
8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Mult 0.2
32b Mult 3.1
16b FP Mult 1.1
32b FP Mult 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

Area
(µm2)

36
67

137
1360
4184
282

3495
1640
7700
N/A
N/A

[Horowitz, “Computing’s Energy Problem (and what we can do about it)”, ISSCC 2014]

Relative Energy Cost

1 10 102 103 104

Relative Area Cost

1 10 102 103

4

Number Representation

FP32

FP16

Int32

Int16

Int8

S E M
1 8 23

S E M
1 5 10

M
31

S

S M

1

1 15

S M
1 7

Range Accuracy

10-38 – 1038 .000006%

6x10-5 - 6x104 .05%

0 – 2x109 ½

0 – 6x104 ½

0 – 127 ½

Image Source: B. Dally

5

Floating Point à Fixed Point

1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 32-bit float

exponent (8-bits) mantissa (23-bits) sign

8-bit
fixed

0 1 1 0 0 1 1 0

sign

integer
(4-bits)

mantissa (7-bits)

fractional
(3-bits)

e = 70 s = 1 m = 20482 -1.42122425 x 10-13

s = 0 12.75 m=102

Floating Point

Fixed Point

6

N-bit Precision

Accumulate +

Weight
(N-bits)

Activation
(N-bits)

N x N
multiply

2N-bits

2N+M-bits

Output
(N-bits)

Quantize
to N-bits

For no loss in precision, M is determined based on largest
filter size (in the range of 10 to 16 bits for popular DNNs)

7

Dynamic Fixed Point

1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 32-bit float

exponent (8-bits) mantissa (23-bits) sign

8-bit
dynamic

fixed

0 1 1 0 0 1 1 0

sign

integer
([7-f]-bits)

mantissa (7-bits)

fractional
(f-bits)

e = 70 s = 1 m = 20482 -1.42122425 x 10-13

f = 3 s = 0 12.75 m=102

8-bit
dynamic

fixed

0 1 1 0 0 1 1 0

sign mantissa (7-bits)

fractional
(f-bits)

f = 9 s = 0 0.19921875 m=102

Allow f to vary based on data type and layer

Floating Point

Fixed Point

8

Impact on Accuracy

[Gysel et al., Ristretto, ICLR 2016]

w/o fine tuning

Top-1 accuracy
on of CaffeNet
on ImageNet

9

Avoiding Dynamic Fixed Point

AlexNet
(Layer 6)

Image Source: Moons
et al, WACV 2016

Batch normalization ‘centers’ dynamic range

‘Centered’ dynamic ranges might reduce need for
dynamic fixed point

10

Nvidia PASCAL

“New half-precision, 16-bit
floating point instructions
deliver over 21 TeraFLOPS for
unprecedented training
performance. With 47 TOPS
(tera-operations per second)
of performance, new 8-bit
integer instructions in Pascal
allow AI algorithms to deliver
real-time responsiveness for
deep learning inference.”

– Nvidia.com (April 2016)

11

Google’s Tensor Processing Unit (TPU)

“ With its TPU Google has
seemingly focused on delivering
the data really quickly by cutting
down on precision. Specifically,
it doesn’t rely on floating point
precision like a GPU
….
Instead the chip uses integer
math…TPU used 8-bit integer.”

- Next Platform (May 19, 2016)

[Jouppi et al., ISCA 2017]

12

Precision Varies from Layer to Layer

[Moons et al., WACV 2016] [Judd et al., ArXiv 2016]

13

Bitwidth Scaling (Speed)
Bit-Serial Processing: Reduce Bit-width à Skip Cycles

Speed up of 2.24x vs. 16-bit fixed

[Judd et al., Stripes, CAL 2016]

14

Bitwidth Scaling (Power)

[Moons et al., VLSI 2016]

Reduce Bit-width à
Shorter Critical Path
à Reduce Voltage

Power reduction of
2.56x vs. 16-bit fixed
On AlexNet Layer 2

15

Binary Nets

•  Binary Connect (BC)
–  Weights {-1,1}, Activations 32-bit float

–  MAC à addition/subtraction

–  Accuracy loss: 19% on AlexNet

•  Binarized Neural Networks (BNN)
–  Weights {-1,1}, Activations {-1,1}

–  MAC à XNOR

–  Accuracy loss: 29.8% on AlexNet

Binary Filters

[Courbariaux, arXiv 2016]

[Courbariaux, NIPS 2015]

16

Scale the Weights and Activations

[Rastegari et al., BWN & XNOR-Net, ECCV 2016]

•  Binary Weight Nets (BWN)
–  Weights {-α, α} à except first and last layers are 32-bit float
–  Activations: 32-bit float
–  α determined by the l1-norm of all weights in a layer
–  Accuracy loss: 0.8% on AlexNet

•  XNOR-Net
–  Weights {-α, α}
–  Activations {-βi, βi} à except first and last layers are 32-bit float
–  βi determined by the l1-norm of all activations across channels

for given position i of the input feature map
–  Accuracy loss: 11% on AlexNet

Hardware needs to support
both activation precisions

Scale factors (α, βi) can change per layer or position in filter

17

XNOR-Net

[Rastegari et al., BWN & XNOR-Net, ECCV 2016]

18

Ternary Nets

•  Allow for weights to be zero
–  Increase sparsity, but also increase number of bits (2-bits)

•  Ternary Weight Nets (TWN)
–  Weights {-w, 0, w} à except first and last layers are 32-bit float
–  Activations: 32-bit float

–  Accuracy loss: 3.7% on AlexNet

•  Trained Ternary Quantization (TTQ)
–  Weights {-w1, 0, w2} à except first and last layers are 32-bit float
–  Activations: 32-bit float

–  Accuracy loss: 0.6% on AlexNet

[Li et al., arXiv 2016]

[Zhu et al., ICLR 2017]

19

Non-Linear Quantization

•  Precision refers to the number of levels
–  Number of bits = log2 (number of levels)

•  Quantization: mapping data to a smaller set of levels
–  Linear, e.g., fixed-point
–  Non-linear

•  Computed
•  Table lookup

Objective: Reduce size to improve speed and/or reduce energy
while preserving accuracy

20

Computed Non-linear Quantization

Log Domain Quantization

Product = X << W Product = X * W

[Lee et al., LogNet, ICASSP 2017]

21

Log Domain Computation

Only activation
in log domain

Both weights
and activations
in log domain

[Miyashita et al., arXiv 2016]

max, bitshifts, adds/subs

22

Log Domain Quantization
•  Weights: 5-bits for CONV, 4-bit for FC; Activations: 4-bits
•  Accuracy loss: 3.2% on AlexNet

[Miyashita et al., arXiv 2016],
[Lee et al., LogNet, ICASSP 2017]

Shift and Add

WS

23

Reduce Precision Overview

•  Learned mapping of data to quantization levels
(e.g., k-means)

•  Additional Properties
–  Fixed or Variable (across data types, layers, channels, etc.)

[Han et al., ICLR 2016]

Implement with
look up table

24

Non-Linear Quantization Table Lookup
Trained Quantization: Find K weights via K-means clustering

 to reduce number of unique weights per layer (weight sharing)

[Han et al., Deep Compression, ICLR 2016]

Weight
Decoder/
Dequant
U x 16b

Weight
index

(log2U-bits)
Weight

(16-bits)
Weight
Memory
CRSM x

log2U-bits
Output

Activation
(16-bits)

MAC

Input
Activation
(16-bits)

Example: AlexNet (no accuracy loss)
256 unique weights for CONV layer

16 unique weights for FC layer

Does not reduce
precision of MAC

Overhead
Smaller Weight

Memory

Consequences: Narrow weight memory and second access from (small) table

25

Summary of Reduce Precision
Category Method Weights

(# of bits)
Activations
(# of bits)

Accuracy Loss vs.
32-bit float (%)

Dynamic Fixed
Point

w/o fine-tuning 8 10 0.4
w/ fine-tuning 8 8 0.6

Reduce weight Ternary weights
Networks (TWN)

2* 32 3.7

Trained Ternary
Quantization (TTQ)

2* 32 0.6

Binary Connect (BC) 1 32 19.2
Binary Weight Net
(BWN)

1* 32 0.8

Reduce weight
and activation

Binarized Neural Net
(BNN)

1 1 29.8

XNOR-Net 1* 1 11
Non-Linear LogNet 5(conv), 4(fc) 4 3.2

Weight Sharing 8(conv), 4(fc) 16 0

* first and last layers are 32-bit float

Full list @ [Sze et al., arXiv, 2017]

26

Reduce Number of Ops and Weights

•  Exploit Activation Statistics
•  Network Pruning
•  Compact Network Architectures
•  Knowledge Distillation

27

Sparsity in Fmaps

9 -1 -3
1 -5 5
-2 6 -1

Many zeros in output fmaps after ReLU
ReLU 9 0 0

1 0 5
0 6 0

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5
CONV Layer

of activations # of non-zero activations

(Normalized)

28

…

…

…

…
…

…

ReLU

Input Image

Output Image

Filter Filt

Img

Psum

Psum

Buffer
SRAM

108KB

14×12 PE Array

Link Clock Core Clock

I/O Compression in Eyeriss

Run-Length Compression (RLC)

Example:

Output (64b):

Input: 0, 0, 12, 0, 0, 0, 0, 53, 0, 0, 22, …

5b 16b 1b 5b 16b 5b 16b
2 12 4 53 2 22 0

Run Level Run Level Run Level Term

Off-Chip DRAM
64 bits

Decomp

Comp

[Chen et al., ISSCC 2016]

DCNN Accelerator

29

Compression Reduces DRAM BW

0	

1	

2	

3	

4	

5	

6	

1	 2	 3	 4	 5	

DR
AM

	A
cc
es
s	(
M
B)
	

AlexNet	Conv	Layer	

Uncompressed	 Compressed	

1 2 3 4 5
AlexNet Conv Layer

DRAM
Access

(MB)

0

2

4

6
1.2×

1.4×
1.7×

1.8×
1.9×

Uncompressed
Fmaps + Weights

RLE Compressed
Fmaps + Weights

[Chen et al., ISSCC 2016]

Simple RLC within 5% - 10% of theoretical entropy limit

30

Data	Ga&ng	/	Zero	Skipping	in	Eyeriss	

Filter
Scratch Pad

(225x16b SRAM)

Partial Sum
Scratch Pad

(24x16b REG)

Filt

Img

Input
Psum

2-stage
pipelined
multiplier

Output
Psum

0

Accumulate
Input Psum

1

0

== 0 Zero
Buffer

Enable

Image
Scratch Pad

(12x16b REG)

0
1

Skip MAC and mem reads
when image data is zero.

Reduce PE power by 45%

Reset

[Chen et al., ISSCC 2016]

31

Cnvlutin
•  Process Convolution Layers
•  Built on top of DaDianNao (4.49% area overhead)
•  Speed up of 1.37x (1.52x with activation pruning)

[Albericio et al., ISCA 2016]

32

Pruning Activations

[Reagen et al., ISCA 2016]

Remove small activation values

[Albericio et al., ISCA 2016]

Speed up 11% (ImageNet) Reduce power 2x (MNIST)

Minerva
Cnvlutin

33

Pruning – Make Weights Sparse

•  Optimal Brain Damage
1.  Choose a reasonable network

architecture
2.  Train network until reasonable

solution obtained
3.  Compute the second derivative

for each weight
4.  Compute saliencies (i.e. impact

on training error) for each weight
5.  Sort weights by saliency and

delete low-saliency weights
6.  Iterate to step 2

[Lecun et al., NIPS 1989]

retraining

34

Pruning – Make Weights Sparse

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Prune based on magnitude of weights

7UDLQ�&RQQHFWLYLW\

3UXQH�&RQQHFWLRQV

7UDLQ�:HLJKWV

Example: AlexNet
Weight Reduction: CONV layers 2.7x, FC layers 9.9x
(Most reduction on fully connected layers)
Overall: 9x weight reduction, 3x MAC reduction

[Han et al., NIPS 2015]

35

Speed up of Weight Pruning on CPU/GPU

Intel Core i7 5930K: MKL CBLAS GEMV, MKL SPBLAS CSRMV
NVIDIA GeForce GTX Titan X: cuBLAS GEMV, cuSPARSE CSRMV
NVIDIA Tegra K1: cuBLAS GEMV, cuSPARSE CSRMV

Batch size = 1

On Fully Connected Layers Only
Average Speed up of 3.2x on GPU, 3x on CPU, 5x on mGPU

[Han et al., NIPS 2015]

36

Key Metrics for Embedded DNN

•  Accuracy à Measured on Dataset
•  Speed à Number of MACs
•  Storage Footprint à Number of Weights
•  Energy à ?

37

Energy-Aware Pruning

•  # of Weights alone is not a good metric for
energy
–  Example (AlexNet):

•  # of Weights (FC Layer) > # of Weights (CONV layer)
•  Energy (FC Layer) < Energy (CONV layer)

•  Use energy evaluation method to estimate DNN
energy
–  Account for data movement

[Yang et al., CVPR 2017]

38

Energy-Evaluation Methodology

CNN Shape Configuration
(# of channels, # of filters, etc.)

CNN Weights and Input Data

[0.3, 0, -0.4, 0.7, 0, 0, 0.1, …]

CNN Energy Consumption
L1 L2 L3

Energy

…

Memory
Accesses

Optimization

of MACs
Calculation

…

acc. at mem. level 1
acc. at mem. level 2

acc. at mem. level n

of MACs

Hardware Energy Costs of each
MAC and Memory Access

Ecomp

Edata

Evaluation tool available at http://eyeriss.mit.edu/energy.html

39

Key Observations

•  Number of weights alone is not a good metric for energy
•  All data types should be considered

Output	Feature	Map	
43%	

Input	Feature	Map	
25%	

Weights	
22%	

Computa&on	
10%	

Energy	Consump&on	
of	GoogLeNet	

[Yang et al., CVPR 2017]

40 [Yang et al., CVPR 2017]

Energy Consumption of Existing DNNs

Deeper CNNs with fewer weights do not necessarily consume less
energy than shallower CNNs with more weights

AlexNet	 SqueezeNet	

GoogLeNet	

ResNet-50	
VGG-16	

77%	

79%	

81%	

83%	

85%	

87%	

89%	

91%	

93%	

5E+08	 5E+09	 5E+10	

To
p-
5	
Ac

cu
ra
cy
	

Normalized	Energy	Consump&on	

Original	DNN	

41

Magnitude-based Weight Pruning

Reduce number of weights by removing small magnitude weights

AlexNet	 SqueezeNet	

GoogLeNet	

ResNet-50	
VGG-16	

AlexNet	

SqueezeNet	

77%	

79%	

81%	

83%	

85%	

87%	

89%	

91%	

93%	

5E+08	 5E+09	 5E+10	

To
p-
5	
Ac

cu
ra
cy
	

Normalized	Energy	Consump&on	

Original	DNN	 Magnitude-based	Pruning	[6]	[Han	et	al.,	NIPS	2015]	

42

Energy-Aware Pruning

AlexNet	 SqueezeNet	

GoogLeNet	

ResNet-50	
VGG-16	

AlexNet	

SqueezeNet	

AlexNet	 SqueezeNet	

GoogLeNet	

77%	

79%	

81%	

83%	

85%	

87%	

89%	

91%	

93%	

5E+08	 5E+09	 5E+10	

To
p-
5	
Ac

cu
ra
cy
	

Normalized	Energy	Consump&on	

Original	DNN	 Magnitude-based	Pruning	[6]	 Energy-aware	Pruning	(This	Work)	

1.74x

Remove weights from layers in order of highest to lowest energy
3.7x reduction in AlexNet / 1.6x reduction in GoogLeNet

DNN Models available at http://eyeriss.mit.edu/energy.html

43

Energy Estimation Tool
Website: https://energyestimation.mit.edu/

Input DNN Configuration File

Output DNN energy breakdown across layers

[Yang et al., CVPR 2017]

44

Compression of Weights & Activations
•  Compress weights and activations between DRAM

and accelerator
•  Variable Length / Huffman Coding

•  Tested on AlexNet à 2× overall BW Reduction

[Moons et al., VLSI 2016; Han et al., ICLR 2016]

Value: 16’b0 à Compressed Code: {1’b0}

Value: 16’bx à Compressed Code: {1’b1, 16’bx}

Example:

45

Sparse Matrix-Vector DSP
•  Use CSC rather than CSR for SpMxV

[Dorrance et al., FPGA 2014]

Compressed Sparse Column (CSC) Compressed Sparse Row (CSR)

Reduce memory bandwidth (when not M >> N)
For DNN, M = # of filters, N = # of weights per filter

M

N

46

•  Process Fully Connected Layers (after Deep Compression)
•  Store weights column-wise in Run Length format
•  Read relative column when input is non-zero

~a
�

0 a1 0 a3
�

⇥ ~b
PE0

PE1

PE2

PE3

0

BBBBBBBBBBBBB@

w0,0w0,1 0 w0,3

0 0 w1,2 0

0 w2,1 0 w2,3

0 0 0 0

0 0 w4,2w4,3

w5,0 0 0 0

0 0 0 w6,3

0 w7,1 0 0

1

CCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBB@

b0
b1

�b2
b3

�b4
b5
b6

�b7

1

CCCCCCCCCCCCCA

ReLU)

0

BBBBBBBBBBBBB@

b0
b1
0

b3
0

b5
b6
0

1

CCCCCCCCCCCCCA

1

[Han et al., ISCA 2016]

Input

Weights

Output

EIE: A Sparse Linear Algebra Engine

Dequantize Weight

Keep track of location

Output Stationary Dataflow

Supports Fully Connected Layers Only

47

Sparse CNN (SCNN)

[Parashar et al., ISCA 2017]
Input Stationary Dataflow

Supports Convolutional Layers

=

x

a

b

d

e

f

c
y

z

xa *

ya *

za *

xb *

yb *

zb *

…

Scatter

network

Accumulate MULs

PE frontend PE backend

Densely Packed

Storage of Weights

and Activations

All-to all

Multiplication of

Weights and Activations

Mechanism to Add to

Scattered Partial Sums

48

Structured/Coarse-Grained Pruning
•  Scalpel

–  Prune to match the underlying data-parallel hardware
organization for speed up

[Yu et al., ISCA 2017]

Dense weights Sparse weights

Example: 2-way SIMD

49

Compact Network Architectures

•  Break large convolutional layers into a series
of smaller convolutional layers
–  Fewer weights, but same effective receptive field

•  Before Training: Network Architecture Design

•  After Training: Decompose Trained Filters

50

Network Architecture Design

5x5 filter Two 3x3 filters

decompose

Apply sequentially

decompose

5x5 filter 5x1 filter

1x5 filter

Apply sequentially
GoogleNet/Inception v3

VGG-16

Build Network with series of Small Filters

separable
filters

51

Network Architecture Design

Figure Source:
Stanford cs231n

Reduce size and computation with 1x1 Filter (bottleneck)

[Szegedy et al., ArXiV 2014 / CVPR 2015]

Used in Network In Network(NiN) and GoogLeNet
[Lin et al., ArXiV 2013 / ICLR 2014]

52

Network Architecture Design

Figure Source:
Stanford cs231n

[Szegedy et al., ArXiV 2014 / CVPR 2015]

Used in Network In Network(NiN) and GoogLeNet
[Lin et al., ArXiV 2013 / ICLR 2014]

Reduce size and computation with 1x1 Filter (bottleneck)

53

Network Architecture Design

Figure Source:
Stanford cs231n

[Szegedy et al., ArXiV 2014 / CVPR 2015]

Used in Network In Network(NiN) and GoogLeNet
[Lin et al., ArXiV 2013 / ICLR 2014]

Reduce size and computation with 1x1 Filter (bottleneck)

54

Bottleneck in Popular DNN models

ResNet

GoogleNet

compress

expand

compress

55

SqueezeNet

[F.N. Iandola et al., ArXiv, 2016]]

Fire Module

Reduce weights by reducing number of input
channels by “squeezing” with 1x1
50x fewer weights than AlexNet

(no accuracy loss)

56 [Yang et al., CVPR 2017]

Energy Consumption of Existing DNNs

Deeper CNNs with fewer weights do not necessarily consume less
energy than shallower CNNs with more weights

AlexNet	 SqueezeNet	

GoogLeNet	

ResNet-50	
VGG-16	

77%	

79%	

81%	

83%	

85%	

87%	

89%	

91%	

93%	

5E+08	 5E+09	 5E+10	

To
p-
5	
Ac

cu
ra
cy
	

Normalized	Energy	Consump&on	

Original	DNN	

57

Decompose Trained Filters
After training, perform low-rank approximation by applying tensor
decomposition to weight kernel; then fine-tune weights for accuracy

[Lebedev et al., ICLR 2015] R = canonical rank

58

Decompose Trained Filters

[Denton et al., NIPS 2014]

•  Speed up by 1.6 – 2.7x on CPU/GPU for CONV1,
CONV2 layers

•  Reduce size by 5 - 13x for FC layer
•  < 1% drop in accuracy

Original Approx.
Visualization of Filters

59

Decompose Trained Filters on Phone

[Kim et al., ICLR 2016]

Tucker Decomposition

60

Knowledge Distillation

[Bucilu et al., KDD 2006],[Hinton et al., arXiv 2015]

&RPSOH[
DNN B

(teacher)

6LPSOH DNN
(student)

so
ftm

ax

so
ftm

ax

&RPSOH[
DNN A

(teacher) so
ftm

ax

VFRUHV
class
probabilities

Try to match

