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Advanced Storage Technology 

•  Embedded DRAM (eDRAM) 
–  Increase on-chip storage capacity 

•  3D Stacked DRAM  
–  e.g. Hybrid Memory Cube Memory (HMC), High 

Bandwidth Memory (HBM) 
–  Increase memory bandwidth  
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eDRAM (DaDianNao) 

•  Advantages of eDRAM 
–  2.85x higher density than SRAM 
–  321x more energy-efficient than DRAM (DDR3) 

•  Store weights in eDRAM (36MB) 
–  Target fully connected layers since dominated by weights 
 

[Chen et al., DaDianNao, MICRO 2014] 

16 Parallel 
Tiles 
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Stacked DRAM (NeuroCube) 
•  NeuroCube on Hyper Memory Cube Logic Die  

–  6.25x higher BW than DDR3 
•  HMC (16 ch x 10GB/s) > DDR3 BW (2 ch x 12.8GB/s) 

–  Computation closer to memory (reduce energy) 
 

[Kim et al., NeuroCube, ISCA 2016] 
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Stacked DRAM (TETRIS) 

[Gao et al., Tetris, ASPLOS 2017] 

Eyeriss 
design 

•  Explores the use of HMC with the Eyeriss spatial 
architecture and row stationary dataflow 

•  Allocates more area to the computation (PE array) than 
on-chip memory (global buffer) to exploit the low energy 
and high throughput properties of the HMC 
–  1.5x energy reduction, 4.1x higher throughput vs. 2-D DRAM 
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Analog Computation 

V1 
G1 

I1 = V1×G1 
V2 

G2 

I2 = V2×G2 

I = I1 + I2  
= V1×G1 + V2×G2 

Figure Source:  ISAAC, ISCA 2016 

•  Conductance = Weight 
•  Voltage = Input 
•  Current = Voltage × Conductance  
•  Sum currents for addition 

Input = V1, V2, … 

Filter Weights = G1, G2, … (conductance) 

Weight Stationary Dataflow 

Output = Weight × Input∑
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Memristor Computation 

•  Advantages 
–  High Density (< 10nm x 10nm size*) 

•  ~30x smaller than SRAM** 
•  1.5x smaller than DRAM** 

–  Non-Volatile 
–  Operates at low voltage 
–  Computation within memory (in situ) 

•  Reduce data movement 

Use memristors as programmable 
weights (resistance) 

*[Govoreanu et al., IEDM 2011], **ITRS 2013 
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Memristor 

[Chi et al., ISCA 2016] 
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Challenges with Memristors 

•  Limited Precision  
•  A/D and D/A Conversion 
•  Array Size and Routing 

–  Wire dominates energy for array size of 1k × 1k 
–  IR drop along wire can degrade read accuracy 

•  Write/programming energy 
–  Multiple pulses can be costly 

•  Variations & Yield 
–  Device-to-device, cycle-to-cycle 
–  Non-linear conductance across range  

[Eryilmaz et al., ISQED 2016] 
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ISAAC 

[Shafiee et al., ISCA 2016] 

V1 
G1 I1 = V1.G1 

V2 
G2 

I2 = V2.G2 

I = I1 + I2 =V1.G1 + V2.G2 

S&H S&H S&H S&H S&H S&H S&H S&H 

ADC 

Shift & ADD 

•  eDRAM using memristors  
•  16-bit dot-product operation 

–  8 x 2-bits per memristors 
–  1-bit per cycle computation 
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ISAAC 

[Shafiee et al., ISCA 2016] 

Eight 128x128 
arrays per IMA 

 
12 IMAs per Tile 
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PRIME 

[Chi et al., ISCA 2016] 

•  Bit precision for each 256x256 ReRAM array 
–  3-bit input, 4-bit weight (2x for 6-bit input and 8-bit weight) 
–  Dynamic fixed point (6-bit output) 

•  Reconfigurable to be main memory or accelerator 
–  4-bit MLC computation; 1-bit SLC for storage 
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Fabricated Memristor Crossbar 
•  Transistor-free metal-oxide 

12x12 crossbar 
–  A single-layer perceptron 

(linear classification)  
–  3x3 binary image 
–  10 inputs x 3 outputs x 2 

differential weights = 60 
memristors 

[Prezioso et al., Nature 2015] 
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Optical Neural Network 

[Shen et al., Nature Photonics 2017] 

Matrix Multiplication in the Optical Domain 

The photodetection rate is 100 GHz 
 

“In principle, such a system can be at least 
two orders of magnitude faster than 
electronic neural networks (which are 

restricted to a GHz clock rate)” 


