
1

Hardware Architectures for
Deep Neural Networks

ISCA Tutorial

June 24, 2017

Website: http://eyeriss.mit.edu/tutorial.html

2

Speakers and Contributors 2

Yu-Hsin Chen
PhD Candidate

MIT

Vivienne Sze
Professor

MIT

Joel Emer

Professor
MIT

Senior Distinguished
Research Scientist

NVIDIA

Tien-Ju Yang
PhD Candidate

MIT

3

Outline

•  Overview of Deep Neural Networks

•  DNN Development Resources

•  Survey of DNN Hardware

•  DNN Accelerators

•  DNN Model and Hardware Co-Design

4

Participant Takeaways
•  Understand the key design considerations for

DNNs

•  Be able to evaluate different implementations of
DNN with benchmarks and comparison metrics

•  Understand the tradeoffs between various
architectures and platforms

•  Assess the utility of various optimization
approaches

•  Understand recent implementation trends and
opportunities

5

Resources

•  Eyeriss Project: http://eyeriss.mit.edu
–  Tutorial Slides

–  Benchmarking

–  Energy modeling

–  Mailing List for updates
•  http://mailman.mit.edu/mailman/listinfo/eems-news

–  Paper based on today’s tutorial:
•  V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, “Efficient Processing

of Deep Neural Networks: A Tutorial and Survey”, arXiv, 2017

6

Background of
Deep Neural Networks

7

Artificial Intelligence

Artificial Intelligence

“The science and engineering of creating
intelligent machines”
 - John McCarthy, 1956

8

Artificial Intelligence

AI and Machine Learning

Machine Learning

“Field of study that gives computers the ability
to learn without being explicitly programmed”

– Arthur Samuel, 1959

9

Artificial Intelligence

Brain-Inspired Machine Learning

Machine Learning

Brain-Inspired

An algorithm that takes its basic
functionality from our understanding
of how the brain operates

10

How Does the Brain Work?

•  The basic computational unit of the brain is a neuron
à 86B neurons in the brain

•  Neurons are connected with nearly 1014 – 1015 synapses
•  Neurons receive input signal from dendrites and produce

output signal along axon, which interact with the dendrites of
other neurons via synaptic weights

•  Synaptic weights – learnable & control influence strength

Image Source: Stanford

11

Artificial Intelligence

Spiking-based Machine Learning

Machine Learning

Brain-Inspired

Spiking

12

Spiking Architecture

•  Brain-inspired
•  Integrate and fire
•  Example: IBM TrueNorth

[Merolla et al., Science 2014; Esser et al., PNAS 2016]

http://www.research.ibm.com/articles/brain-chip.shtml

13

Artificial Intelligence

Machine Learning with Neural Networks

Machine Learning

Brain-Inspired

Spiking

Neural
Networks

14

Neural Networks: Weighted Sum

Image Source: Stanford

15

Many Weighted Sums

Image Source: Stanford

16

Artificial Intelligence

Deep Learning

Machine Learning

Brain-Inspired

Spiking

Neural
Networks

Deep
Learning

17

What is Deep Learning?

Image
“Volvo
XC90”

Image Source: [Lee et al., Comm. ACM 2011]

18

Why is Deep Learning Hot Now?

350M images
uploaded per
day

2.5 Petabytes
of customer
data hourly

300 hours of
video uploaded
every minute

Big Data
Availability

GPU
Acceleration

New ML
Techniques

19

ImageNet Challenge

Image Classification Task:
 1.2M training images • 1000 object categories

Object Detection Task:
 456k training images • 200 object categories

20

ImageNet: Image Classification Task

0

5

10

15

20

25

30

2010 2011 2012 2013 2014 2015 Human

Top 5 Classification Error (%)
large error rate reduction
due to Deep CNN

[Russakovsky et al., IJCV 2015]

Deep CNN-based designs Hand-crafted feature-
based designs

21

GPU Usage for ImageNet Challenge

22

Established Applications

•  Image
o  Classification: image to object class
o  Recognition: same as classification (except for faces)
o  Detection: assigning bounding boxes to objects
o  Segmentation: assigning object class to every pixel

•  Speech & Language
o  Speech Recognition: audio to text
o  Translation
o  Natural Language Processing: text to meaning
o  Audio Generation: text to audio

•  Games

23

Deep Learning on Games

Google DeepMind AlphaGo

24

Emerging Applications
•  Medical (Cancer Detection, Pre-Natal)

•  Finance (Trading, Energy Forecasting, Risk)

•  Infrastructure (Structure Safety and Traffic)

•  Weather Forecasting and Event Detection

http://www.nextplatform.com/2016/09/14/next-wave-deep-learning-applications/

25

Deep Learning for Self-driving Cars

26

Opportunities

From EE Times – September 27, 2016

”Today the job of training machine learning models is
limited by compute, if we had faster processors we’d
run bigger models…in practice we train on a reasonable
subset of data that can finish in a matter of months. We
could use improvements of several orders of magnitude
– 100x or greater.”

– Greg Diamos, Senior Researcher, SVAIL, Baidu

27

Overview of
Deep Neural Networks

28

DNN Timeline

•  1940s: Neural networks were proposed
•  1960s: Deep neural networks were proposed
•  1989: Neural network for recognizing digits (LeNet)
•  1990s: Hardware for shallow neural nets

–  Example: Intel ETANN (1992)

•  2011: Breakthrough DNN-based speech recognition
–  Microsoft real-time speech translation

•  2012: DNNs for vision supplanting traditional ML
–  AlexNet for image classification

•  2014+: Rise of DNN accelerator research
–  Examples: Neuflow, DianNao, etc.

29

Publications at Architecture Conferences

•  MICRO, ISCA, HPCA, ASPLOS

30

So Many Neural Networks!

http://www.asimovinstitute.org/neural-network-zoo/

31

DNN Terminology 101

Image Source: Stanford

Neurons

32

DNN Terminology 101

Image Source: Stanford

Synapses

33

DNN Terminology 101

Image Source: Stanford

Each synapse has a weight for neuron activation

X1

X2

X3

Y1

Y2

Y3

Y4

W11

W34

Yj = activation Wij × Xi
i=1

3

∑
⎛

⎝
⎜

⎞

⎠
⎟

34

DNN Terminology 101

Image Source: Stanford

Weight Sharing: multiple synapses use the same weight value

X1

X2

X3

Y1

Y2

Y3

Y4

W11

W34

Yj = activation Wij × Xi
i=1

3

∑
⎛

⎝
⎜

⎞

⎠
⎟

35

DNN Terminology 101

Image Source: Stanford

L1 Neuron outputs
a.k.a. Activations L1 Neuron inputs

e.g. image pixels

Layer 1

36

DNN Terminology 101

Image Source: Stanford

L2 Output
Activations

L2 Input
Activations Layer 2

37

DNN Terminology 101

Image Source: Stanford

Fully-Connected: all i/p neurons connected to all o/p neurons

Sparsely-Connected

38

DNN Terminology 101

Image Source: Stanford

Feed Forward Feedback

39

Popular Types of DNNs

•  Fully-Connected NN
–  feed forward, a.k.a. multilayer perceptron (MLP)

•  Convolutional NN (CNN)
–  feed forward, sparsely-connected w/ weight sharing

•  Recurrent NN (RNN)
–  feedback

•  Long Short-Term Memory (LSTM)
–  feedback + storage

40

Inference vs. Training

•  Training: Determine weights
–  Supervised:

•  Training set has inputs and outputs, i.e., labeled

–  Unsupervised:
•  Training set is unlabeled

–  Semi-supervised:
•  Training set is partially labeled

–  Reinforcement:
•  Output assessed via rewards and punishments

•  Inference: Apply weights to determine output

41

Deep Convolutional Neural Networks

Modern Deep CNN: 5 – 1000 Layers

Classes FC
Layer

CONV
Layer

Low-Level
Features CONV

Layer

High-Level
Features …

1 – 3 Layers

42

Deep Convolutional Neural Networks

Classes FC
Layer

CONV
Layer

Low-Level
Features CONV

Layer

High-Level
Features …

Convolution Activation

×	

43

Deep Convolutional Neural Networks

Classes FC
Layer

CONV
Layer

Low-Level
Features CONV

Layer

High-Level
Features …

Fully
Connected

Activation

×	

44

Deep Convolutional Neural Networks

Classes FC
Layer

CONV
Layer

CONV
Layer

High-Level
Features

Optional layers in between
CONV and/or FC layers

NORM
Layer

POOL
Layer

Normalization Pooling

45

Deep Convolutional Neural Networks

Classes
High-Level
Features FC

Layer
CONV
Layer

CONV
Layer

NORM
Layer

POOL
Layer

Convolutions account for more
than 90% of overall computation,
dominating runtime and energy
consumption

46

Convolution (CONV) Layer

R

S

H

a plane of input activations
a.k.a. input feature map (fmap)

filter (weights)

W

47

R

filter (weights)

Convolution (CONV) Layer

input fmap

S

Element-wise
Multiplication

H

W

48

R

filter (weights)

S

Convolution (CONV) Layer

E

F
Partial Sum (psum)

Accumulation

input fmap output fmap

Element-wise
Multiplication

H

W

an output
activation

49

H
R

filter (weights)

S

Convolution (CONV) Layer

E

Sliding Window Processing

input fmap
an output
activation

output fmap

W F

50

H

Convolution (CONV) Layer

R

S

C

input fmap

output fmap
C filter

Many Input Channels (C)

E

W F

51

Convolution (CONV) Layer

E

output fmap many
filters (M)

Many
Output Channels (M)

M

…

R

S
1

R

S

C

M

H

input fmap
C

C

W F

52

Convolution (CONV) Layer

…

M

…

Many
Input fmaps (N) Many

Output fmaps (N)
…

R

S

R

S

C

C

filters

E

F

H

C

H

W

C

E
1 1

N N

W F

53

CNN Decoder Ring

•  N – Number of input fmaps/output fmaps (batch size)
•  C – Number of 2-D input fmaps /filters (channels)
•  H – Height of input fmap (activations)
•  W – Width of input fmap (activations)
•  R – Height of 2-D filter (weights)
•  S – Width of 2-D filter (weights)
•  M – Number of 2-D output fmaps (channels)
•  E – Height of output fmap (activations)
•  F – Width of output fmap (activations)

54

CONV Layer Tensor Computation
Input fmaps (I)

Filter weights (W)
Output fmaps (O)

Biases (B)

55

CONV Layer Implementation

Naïve 7-layer for-loop implementation:

for	(n=0;	n<N;	n++)	{	
				for	(m=0;	m<M;	m++)	{	
								for	(x=0;	x<F;	x++)	{	
												for	(y=0;	y<E;	y++)	{	
	
																O[n][m][x][y]	=	B[m];	
																for	(i=0;	i<R;	i++)	{	
																				for	(j=0;	j<S;	j++)	{	
																								for	(k=0;	k<C;	k++)	{	
																												O[n][m][x][y]	+=	I[n][k][Ux+i][Uy+j]	×	W[m][k][i][j];	
																								}	
																				}	
																}	
	
																O[n][m][x][y]	=	Activation(O[n][m][x][y]);	
												}																	
								}	
				}	
}	

for each output fmap value

convolve
a window
and apply
activation

56

Traditional Activation Functions

Image Source: Caffe Tutorial

Sigmoid
1

-1

0

0 1 -1

y=1/(1+e-x)	

Hyperbolic Tangent
1

-1

0

0 1 -1

y=(ex-e-x)/(ex+e-x)	

57

Modern Activation Functions

Rectified Linear Unit
(ReLU)

1

-1

0

0 1 -1

y=max(0,x)	

Leaky ReLU

1

-1

0

0 1 -1

y=max(αx,x)	

Exponential LU

1

-1

0

0 1 -1
				x,							
				α(ex-1),	

x≥0	
x<0	y=	

α = small const. (e.g. 0.1)

Image Source: Caffe Tutorial

58

Fully-Connected (FC) Layer
•  Height and width of output fmaps are 1 (E = F = 1)
•  Filters as large as input fmaps (R = H, S = W)
•  Implementation: Matrix Multiplication

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M =

59

H

W

C

N

FC Layer – from CONV Layer POV

…

M

…

input fmaps
output fmaps

…

H

H

W

C

C

filters

H

C

1
1 1

1

1
N

W 1 W

60

Pooling (POOL) Layer

Image Source: Caffe Tutorial

•  Reduce resolution of each channel independently
•  Overlapping or non-overlapping à depending on stride

Increases translation-invariance and noise-resilience

61

POOL Layer Implementation

Naïve 6-layer for-loop max-pooling implementation:
for	(n=0;	n<N;	n++)	{	
				for	(m=0;	m<M;	m++)	{	
								for	(x=0;	x<F;	x++)	{	
												for	(y=0;	y<E;	y++)	{	
	
																max	=	-Inf;		
																for	(i=0;	i<R;	i++)	{	
																				for	(j=0;	j<S;	j++)	{	
																								if	(I[n][m][Ux+i][Uy+j]	>	max)	{	
																												max	=	I[n][m][Ux+i][Uy+j];	
																								}	
																				}	
																}	
	
																O[n][m][x][y]	=	max;	
												}																	
								}	
				}	
}	

for each pooled value

find the max
with in a window

62

Normalization (NORM) Layer

•  Batch Normalization (BN)
–  Normalize activations towards mean=0 and std.

dev.=1 based on the statistics of the training dataset

–  put in between CONV/FC and Activation function

[Ioffe et al., ICML 2015]

CONV
Layer

Convolution Activation

×	
BN

Believed to be key to getting high accuracy and
faster training on very deep neural networks.

63

BN Layer Implementation
•  The normalized value is further scaled and shifted, the

parameters of which are learned from training

data mean

data std. dev.

learned scale factor

learned shift factor
small const. to avoid
numerical problems

64

Normalization (NORM) Layer

•  Local Response Normalization (LRN)
•  Tries to mimic the inhibition scheme in the brain

Image Source: Caffe Tutorial

Now deprecated!

65

Relevant Components for Tutorial

•  Typical operations that we will discuss:
–  Convolution (CONV)
–  Fully-Connected (FC)
–  Max Pooling
–  ReLU

