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Outline 

•  Overview of Deep Neural Networks 

•  DNN Development Resources 

•  Survey of DNN Hardware 

•  DNN Accelerators 

•  DNN Model and Hardware Co-Design 
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Participant Takeaways 
•  Understand the key design considerations for 

DNNs  

•  Be able to evaluate different implementations of 
DNN with benchmarks and comparison metrics  

•  Understand the tradeoffs between various 
architectures and platforms 

•  Assess the utility of various optimization 
approaches 

•  Understand recent implementation trends and 
opportunities 
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Resources 

•  Eyeriss Project: http://eyeriss.mit.edu  
–  Tutorial Slides 

–  Benchmarking 

–  Energy modeling 

–  Mailing List for updates 
•  http://mailman.mit.edu/mailman/listinfo/eems-news  

–  Paper based on today’s tutorial: 
•  V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, “Efficient Processing 

of Deep Neural Networks: A Tutorial and Survey”, arXiv, 2017 
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Background of  
Deep Neural Networks 
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Artificial Intelligence 

Artificial Intelligence 

“The science and engineering of creating 
intelligent machines” 
            - John McCarthy, 1956 
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Artificial Intelligence 

AI and Machine Learning 

Machine Learning 

“Field of study that gives computers the ability 
to learn without being explicitly programmed” 

–  Arthur Samuel, 1959 
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Artificial Intelligence 

Brain-Inspired Machine Learning 

Machine Learning 

Brain-Inspired 

An algorithm that takes its basic 
functionality from our understanding 
of how the brain operates 
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How Does the Brain Work? 

•  The basic computational unit of the brain is a neuron 
à 86B neurons in the brain 

•  Neurons are connected with nearly 1014 – 1015 synapses 
•  Neurons receive input signal from dendrites and produce 

output signal along axon, which interact with the dendrites of 
other neurons via synaptic weights 

•  Synaptic weights – learnable & control influence strength 

Image Source: Stanford 
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Artificial Intelligence 

Spiking-based Machine Learning 

Machine Learning 

Brain-Inspired 

Spiking 
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Spiking Architecture 

•  Brain-inspired 
•  Integrate and fire 
•  Example: IBM TrueNorth 

[Merolla et al., Science 2014; Esser et al., PNAS 2016] 

http://www.research.ibm.com/articles/brain-chip.shtml 
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Artificial Intelligence 

Machine Learning with Neural Networks 

Machine Learning 

Brain-Inspired 

Spiking 
 

Neural 
Networks 
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Neural Networks: Weighted Sum 

Image Source: Stanford 
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Many Weighted Sums 

Image Source: Stanford 
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Artificial Intelligence 

Deep Learning 

Machine Learning 

Brain-Inspired 

Spiking 
 

Neural 
Networks 

Deep 
Learning 
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What is Deep Learning? 

Image 
“Volvo 
XC90” 

Image Source: [Lee et al., Comm. ACM 2011] 
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Why is Deep Learning Hot Now? 

350M images 
uploaded per 
day 

2.5 Petabytes 
of customer 
data hourly 

300 hours of 
video uploaded 
every minute 

Big Data 
Availability 

GPU 
Acceleration 

New ML 
Techniques 
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ImageNet Challenge 

Image Classification Task: 
 1.2M training images • 1000 object categories 

 

Object Detection Task: 
 456k training images • 200 object categories 
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ImageNet: Image Classification Task 
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Top 5 Classification Error (%) 
large error rate reduction 
due to Deep CNN 

[Russakovsky et al., IJCV 2015] 

Deep CNN-based designs Hand-crafted feature- 
based designs 
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GPU Usage for ImageNet Challenge 
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Established Applications 

•  Image 
o  Classification: image to object class 
o  Recognition: same as classification (except for faces) 
o  Detection: assigning bounding boxes to objects 
o  Segmentation: assigning object class to every pixel 

•  Speech & Language 
o  Speech Recognition: audio to text 
o  Translation 
o  Natural Language Processing: text to meaning 
o  Audio Generation: text to audio 

•  Games 
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Deep Learning on Games 

Google DeepMind AlphaGo 
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Emerging Applications 
•  Medical (Cancer Detection, Pre-Natal) 

•  Finance (Trading, Energy Forecasting, Risk) 

•  Infrastructure (Structure Safety and Traffic) 

•  Weather Forecasting and Event Detection 

http://www.nextplatform.com/2016/09/14/next-wave-deep-learning-applications/ 
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Deep Learning for Self-driving Cars 
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Opportunities 

From EE Times – September 27, 2016 
 
”Today the job of training machine learning models is 
limited by compute, if we had faster processors we’d 
run bigger models…in practice we train on a reasonable 
subset of data that can finish in a matter of months. We 
could use improvements of several orders of magnitude 
– 100x or greater.” 

– Greg Diamos, Senior Researcher, SVAIL, Baidu 
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Overview of  
Deep Neural Networks 
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DNN Timeline 

•  1940s: Neural networks were proposed 
•  1960s: Deep neural networks were proposed 
•  1989: Neural network for recognizing digits (LeNet) 
•  1990s: Hardware for shallow neural nets 

–  Example: Intel ETANN (1992) 

•  2011: Breakthrough DNN-based speech recognition 
–  Microsoft real-time speech translation  

•  2012: DNNs for vision supplanting traditional ML 
–  AlexNet for image classification 

•  2014+: Rise of DNN accelerator research 
–  Examples: Neuflow, DianNao, etc. 
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Publications at Architecture Conferences 

•  MICRO, ISCA, HPCA, ASPLOS 
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So Many Neural Networks! 

http://www.asimovinstitute.org/neural-network-zoo/ 
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DNN Terminology 101 

Image Source: Stanford 

Neurons 
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DNN Terminology 101 

Image Source: Stanford 

Synapses 
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DNN Terminology 101 

Image Source: Stanford 

Each synapse has a weight for neuron activation 
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DNN Terminology 101 

Image Source: Stanford 

Weight Sharing: multiple synapses use the same weight value 
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DNN Terminology 101 

Image Source: Stanford 

L1 Neuron outputs 
a.k.a. Activations L1 Neuron inputs 

e.g. image pixels 

Layer 1 
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DNN Terminology 101 

Image Source: Stanford 

L2 Output  
Activations 

L2 Input  
Activations Layer 2 
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DNN Terminology 101 

Image Source: Stanford 

Fully-Connected: all i/p neurons connected to all o/p neurons 

Sparsely-Connected 
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DNN Terminology 101 

Image Source: Stanford 

Feed Forward Feedback 
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Popular Types of DNNs 

•  Fully-Connected NN 
–  feed forward, a.k.a. multilayer perceptron (MLP) 

•  Convolutional NN (CNN) 
–  feed forward, sparsely-connected w/ weight sharing 

•  Recurrent NN (RNN)  
–  feedback 

•  Long Short-Term Memory (LSTM) 
–  feedback + storage 
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Inference vs. Training  

•  Training: Determine weights 
–  Supervised:  

•  Training set has inputs and outputs, i.e., labeled 

–  Unsupervised:  
•  Training set is unlabeled 

–  Semi-supervised:  
•  Training set is partially labeled  

–  Reinforcement: 
•  Output assessed via rewards and punishments 

•  Inference: Apply weights to determine output  
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Deep Convolutional Neural Networks 

Modern Deep CNN: 5 – 1000 Layers 

Classes FC 
Layer 

CONV 
Layer 

Low-Level 
Features CONV 

Layer 

High-Level 
Features … 

1 – 3 Layers 
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Deep Convolutional Neural Networks 

Classes FC 
Layer 

CONV 
Layer 

Low-Level 
Features CONV 

Layer 

High-Level 
Features … 

Convolution Activation 

×	



43 

Deep Convolutional Neural Networks 

Classes FC 
Layer 

CONV 
Layer 

Low-Level 
Features CONV 

Layer 

High-Level 
Features … 

Fully 
Connected 

Activation 

×	
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Deep Convolutional Neural Networks 

Classes FC 
Layer 

CONV 
Layer 

CONV 
Layer 

High-Level 
Features 

Optional layers in between  
CONV and/or FC layers 

NORM 
Layer 

POOL 
Layer 

Normalization Pooling 
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Deep Convolutional Neural Networks 

Classes 
High-Level 
Features FC 

Layer 
CONV 
Layer 

CONV 
Layer 

NORM 
Layer 

POOL 
Layer 

Convolutions account for more 
than 90% of overall computation, 
dominating runtime and energy 
consumption 
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Convolution (CONV) Layer 

R 

S 

H 

a plane of input activations 
a.k.a. input feature map (fmap) 

filter (weights) 

W 
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R 

filter (weights) 

Convolution (CONV) Layer 

input fmap 

S 

Element-wise 
Multiplication 

H 

W 
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R 

filter (weights) 

S 

Convolution (CONV) Layer 

E 

F 
Partial Sum (psum) 

Accumulation 

input fmap output fmap 

Element-wise 
Multiplication 

H 

W 

an output  
activation 
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H 
R 

filter (weights) 

S 

Convolution (CONV) Layer 

E 

Sliding Window Processing 

input fmap 
an output  
activation 

output fmap 

W F 
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H 

Convolution (CONV) Layer 

R 

S 

C 

input fmap 

output fmap 
C filter 

Many Input Channels (C) 

E 

W F 
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Convolution (CONV) Layer 

E 

output fmap many 
filters (M) 

Many 
Output Channels (M) 
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Convolution (CONV) Layer 

…
 

M 

…
 

Many 
Input fmaps (N) Many 
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CNN Decoder Ring 

•  N – Number of input fmaps/output fmaps (batch size) 
•  C – Number of 2-D input fmaps /filters (channels) 
•  H – Height of input fmap (activations)  
•  W – Width of input fmap (activations) 
•  R – Height of 2-D filter (weights) 
•  S – Width of 2-D filter (weights) 
•  M – Number of 2-D output fmaps (channels) 
•  E – Height of output fmap  (activations) 
•  F – Width of output fmap (activations) 
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CONV Layer Tensor Computation 
Input fmaps (I)  

Filter weights (W) 
Output fmaps (O) 

Biases (B) 



55 

CONV Layer Implementation 

Naïve 7-layer for-loop implementation: 

for	(n=0;	n<N;	n++)	{	
				for	(m=0;	m<M;	m++)	{	
								for	(x=0;	x<F;	x++)	{	
												for	(y=0;	y<E;	y++)	{	
	
																O[n][m][x][y]	=	B[m];	
																for	(i=0;	i<R;	i++)	{	
																				for	(j=0;	j<S;	j++)	{	
																								for	(k=0;	k<C;	k++)	{	
																												O[n][m][x][y]	+=	I[n][k][Ux+i][Uy+j]	×	W[m][k][i][j];	
																								}	
																				}	
																}	
	
																O[n][m][x][y]	=	Activation(O[n][m][x][y]);	
												}																	
								}	
				}	
}	

for each output fmap value 

convolve  
a window 
and apply 
activation 



56 

Traditional Activation Functions 

Image Source: Caffe Tutorial 

Sigmoid 
1 

-1 
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y=1/(1+e-x)	
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Modern Activation Functions 

Rectified Linear Unit 
(ReLU) 

1 

-1 

0 

0 1 -1 

y=max(0,x)	

Leaky ReLU 

1 

-1 

0 
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y=max(αx,x)	

Exponential LU 

1 

-1 

0 

0 1 -1 
				x,							
				α(ex-1),	

x≥0	
x<0	y=	

α = small const. (e.g. 0.1) 

Image Source: Caffe Tutorial 
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Fully-Connected (FC) Layer 
•  Height and width of output fmaps are 1 (E = F = 1) 
•  Filters as large as input fmaps (R = H, S = W) 
•  Implementation: Matrix Multiplication 

M 

CHW 

CHW 

N 

Filters Input fmaps 

× 

N 

Output fmaps 

M = 
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FC Layer – from CONV Layer POV 
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Pooling (POOL) Layer 

Image Source: Caffe Tutorial 

•  Reduce resolution of each channel independently 
•  Overlapping or non-overlapping à depending on stride 

Increases translation-invariance and noise-resilience  
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POOL Layer Implementation 

Naïve 6-layer for-loop max-pooling implementation: 
for	(n=0;	n<N;	n++)	{	
				for	(m=0;	m<M;	m++)	{	
								for	(x=0;	x<F;	x++)	{	
												for	(y=0;	y<E;	y++)	{	
	
																max	=	-Inf;		
																for	(i=0;	i<R;	i++)	{	
																				for	(j=0;	j<S;	j++)	{	
																								if	(I[n][m][Ux+i][Uy+j]	>	max)	{	
																												max	=	I[n][m][Ux+i][Uy+j];	
																								}	
																				}	
																}	
	
																O[n][m][x][y]	=	max;	
												}																	
								}	
				}	
}	

for each pooled value 

find the max  
with in a window 
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Normalization (NORM) Layer 

•  Batch Normalization (BN) 
–  Normalize activations towards mean=0 and std. 

dev.=1 based on the statistics of the training dataset 

–  put in between CONV/FC and Activation function 

[Ioffe et al., ICML 2015] 

CONV 
Layer 

Convolution Activation 

×	
BN 

Believed to be key to getting high accuracy and  
faster training on very deep neural networks. 
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BN Layer Implementation 
•  The normalized value is further scaled and shifted, the 

parameters of which are learned from training 

data mean 

data std. dev. 

learned scale factor 

learned shift factor 
small const. to avoid 
numerical problems 
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Normalization (NORM) Layer 

•  Local Response Normalization (LRN) 
•  Tries to mimic the inhibition scheme in the brain 

Image Source: Caffe Tutorial 

Now deprecated! 
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Relevant Components for Tutorial 

•  Typical operations that we will discuss: 
–  Convolution (CONV) 
–  Fully-Connected (FC) 
–  Max Pooling 
–  ReLU 


