A Fully-Integrated Energy-Efficient H.265/HEVC Decoder with eDRAM for Wearable Applications

<u>Mehul Tikekar</u>, Prof. Vivienne Sze, Prof. Anantha Chandrakasan

Massachusetts Institute of Technology

Motivation for Fully-Integrated Video Decoder

- 50mW power budget ^[1]
- Off-chip memory access power is 2.8x-6x processing power ^[2,3]
- Need to reduce board footprint for wearables

[1] M. Aleksic, Qualcomm, VLSI 2017 Short Course[2] C.-T. Huang, ISSCC 2013, [3] D. Zhou, ISSCC 2012

Previous Work

	ISSCC 2012	ISSCC 2013	A-SSCC 2013	ESSCRIC 2014	ISSSCC 2016
Standard	H.264/AVC MP/MVC	H.265/ HEVC WD4	H.265/ HEVC	H.265/HEVC, multistandard	H.265/ HEVC
Technology	65nm/1.2V	40nm/0.9V	90nm/1V	28nm/0.9V	40nm/1V
Max Throughput	7640x4320 @60fps	3840x2160 @30fps	1920x1080 @35fps	3840x2160 @60fps	7640x4320 @120fps
Frame buffer Storage	64b DDR3	32b DDR3	n/a	32b LPDDR3	64b DDR3
Core Power [mW]	410	76	36.9	104	690
Frame buffer Power [mW]	2520	219	n/a	n/a	n/a

Difficult to meet **50mW** power budget for wearables with DRAM-based decoders

Video Coding Standard: H.265/HEVC

- High-Efficiency Video Coding (H.265/HEVC)
- 2x better compression vs. H.264/AVC
- System power savings from wireless RX
 - WiFi RX energy = 2x video decoding energy

HEVC Decoder Pipeline

Focus of This Talk

- 1. Frame Buffer to Inter Prediction
- 2. On-demand Power-up of eDRAM
- 3. Data movement of Syntax Elements

Frame Buffer and Inter Prediction

- Inter-frame prediction provides most compression
- 50% processing time
- Dominates memory bandwidth requirements
 - 8-tap filter: 11x11 pixels read for 4x4 prediction
 - Prediction from 2 frames
- Frame buffer needs to store several older frames

Frame buffer requirements

Size: 10 - 50 MB Bandwidth: 0.5 - 1 GB/s

Memory Optimization Techniques

[1] C.-T. Huang, ISSCC 2013 [2] Guo, TMM 2014

Motivation for Fully-Integrated Video Decoder

eDRAM vs. DRAM

Pros

- Lower energy/access
- Lower latency, higher bandwidth
- Smaller board footprint on wearable devices
- Smaller sized macros can be individually powered down
 Cons
- Lower density
- More frequent refresh

In video decoder, eDRAM refresh power = **4x read/write power**

eDRAM Operating Modes

Maximize use of Deep power-down mode to reduce refresh power

RFC to Reduce eDRAM Refresh Power

- RFC techniques for DRAM use direct addressing
- For DRAM, bandwidth is more important than capacity

- Memory size and refresh power remain unchanged

Traditional RFC techniques do not reduce eDRAM refresh power

RFC for eDRAM with Indirect Addressing

- For eDRAM, reducing memory usage is more important than bandwidth
- Fully packed format: indirect addressing
- Address look-up memory is needed
- Exploits low latency and low energy/access cost of eDRAM

Proposed method exploits key benefits of eDRAM to reduce refresh power

Proposed RFC Scheme Example

					I					🖌 At m	ost 4 bits for 0-15
	12	5	2	3	1		10	3 0	1		
	15	9	12	17	=	= 2 +	13	7 10	15		4
	3	15	12	11			1	13 10	9	l	
	6	7	2	16			4	5 0	14		
	4x4	oloci (16)	< of < 8b)	pixel	S I	minimum (8b)	1	delta (16 x 4	b)	ra (ange (4b)
No. of bits = 8 (minimum) + 4 (range) + 16*range						range	range of deltas				
Compression achieved = $128/76 = 1.7x$						0	0				
•						1	0-1				
										2	0-3
										•••	
Ave	era	ge	COI	mp	res	sion: 2	2x*			8	0-255 (compression off)

* Over HEVC Common Test Conditions (384 video sequences)

Comparison with Prior Work

	This work	Guo, TMM 2014
Compression method	Min-delta	Intra-prediction + DPCM + coding
Data saving	50%	60%
Area	8 kgate	80 kgate
Throughput	32 pixel/cycle	32 pixel/cycle

Lightweight compression method achieves good cost-performance tradeoff

Reading Pixels for Motion Compensation

Efficient Address Storage

Focus of This Talk

- 1. Frame Buffer to Motion Compensation
- 2. On-demand Power-up of eDRAM
- 3. Data Movement of Syntax Elements

Always On Scheme

Power Down Unused Macros

Power Up Macros On Demand

Reduction in Number of Active eDRAMs

Frame Buffer Energy Savings

- Refresh power is major challenge for using eDRAM
- RFC compression + decompression in 8 kgates
 - < 1% total gate count of decoder</p>
- Compression achieved: 20% 80%
- 50% of eDRAM macros in deep power-down mode
- eDRAM refresh power reduced by 5.3 mW
 - 40% memory power
 - 20% system power

Focus of This Talk

- 1. Frame Buffer to Motion Compensation
- 2. On-demand Power-up of eDRAM
- 3. Data movement of Syntax Elements

High-level Parallelism in HEVC

2

1

- Each pixel processor operates on 1 row of 64x64 pixel blocks
- Pixel processors are run at **0.25x** clock frequency to reduce power

Buffering Requirements

syntax elements in eDRAM buffer

Pixel processors

- A buffer of 8 rows of syntax elements is needed
- Size: 12Mbit (3 eDRAM macros)
- Bandwidth: 256 MB/s

Two-stage Entropy Decoding

- Arithmetic Decoder^[1]
 - Uses probabilities of 0s and 1s
 - Context Adaptive Binary Arithmetic Coding (CABAC)
- Debinarizer
 - Parses stream of binary symbols
 - Huffman Coding, Run Length Coding

Store compact binary symbols in eDRAM to save access and refresh power

Reducing Data Movement of Syntax Elements

- Bandwidth reduction: 66x (256MB/s \rightarrow 3.9MB/s)
- Energy savings: **4.2mW** (16% of total power)
- Chip area reduction: 6%

Exploit built-in HEVC compression to reduce data movement

Chip Results

Technology	TSMC 40nm LP]	
Supply Voltage	Core 0.8 - 1.1V eDRAM 1.1V I/O 2.5V		5.8mm
Standard	H.265/HEVC (Main Profile)		eDRAM (2x4 banks)
Chip Size	5.8 mm x 5.1 mm	1 Tm	Core 1 💥 Core 2 eDRAM
Logic Count	1,122 kgates	- <u>-</u> <u>-</u>	Core 3 🕈 Core 4
On-Chip SRAM	162.75 kB	22222	
On-Chip eDRAM	21 x 0.5MB		eDRAM (3x4 banks)
Max Resolution	1920 x 1080		
Max Throughput	47.9Mpixels/s]↓[
Power at 1.1V	24.9mW] _T	hanks to TSMC University Shuttle

for chip fabrication

Energy and Power breakdown

Voltage-Frequency Scaling

Comparison with previous work

	This Work	ISSCC 2013				
Standard	H.265/HEVC	H.265/HEVC WD4				
Gate Count	1438K	715K				
On-Chip Storage	162.75kB	124kB				
Technology	40nm/1.1V	40nm/0.9V				
Max Throughput	1920x1080@24fps	3840x2160@30fps				
Max Frequency	80MHz/20MHz	200MHz				
Frame buffer Storage	128b eDRAM	32b DDR3				
1920 x 1080 @ 24 fps decoding power						
Core Power [mW]	14.6	36*				
Frame Buffer Power [mW]	10.3	150*				
System Power [mW]	24.9	186*				

* Estimated by scaling core frequency and memory bandwidth

eDRAM Power Savings

For 1920x1080 @ 24 fps video decoding

Contributions

Energy-efficient video decoding on wearables

- 1920x1080 at 24fps in 25mW system power
- Fully-integrated solution minimizes board footprint
- Data-dependent energy saving in memory access
 - RFC to reduce eDRAM refresh power (20%)
 - On-demand power up of eDRAM macros
 - Movement of syntax elements (16%)
- Energy-efficient use of Embedded DRAM
 - 1.8x power saving in eDRAM

Thanks to TSMC University Shuttle for chip fabrication and NSF for funding