
LOW POWER DEPTH ESTIMATION FOR TIME-OF-FLIGHT IMAGING

James Noraky, Vivienne Sze

Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

{jnoraky, sze}@mit.edu

ABSTRACT

Depth sensing is used in a variety of applications that range
from augmented reality to robotics. One way to measure
depth is with a time-of-flight (TOF) camera, which obtains
depth by emitting light and measuring its round trip time.
However, for many battery powered devices, the illumination
source of the TOF camera requires a significant amount of
power and further limits its battery life. To minimize the
power required for depth sensing, we present an algorithm
that exploits the apparent motion across images collected
alongside the TOF camera to obtain a new depth map with-
out illuminating the scene. Our technique is best suited for
estimating the depth of rigid objects and obtains low latency,
640×480 depth maps at 30 frames per second on a low power
embedded platform by using block matching at a sparse set
of points and least squares minimization. We evaluated our
technique on an RGB-D dataset where it produced depth
maps with a mean relative error of 0.85% while reducing the
total power required for depth sensing by 3×.

Index Terms— time-of-flight camera, low-power, depth
estimation, RGB-D, depth map

1. INTRODUCTION

Depth sensing is used in a variety of applications. For appli-
cations that are sensitive to latency, like augmented reality or
robotics, a time-of-flight (TOF) camera is appealing because
it obtains depth with minimal computations by emitting and
measuring the round trip time of light [1]. However, many of
these applications also run on battery powered devices, and
one drawback of a TOF camera is its illumination source,
which further limits battery life. To minimize the power con-
sumption of TOF cameras, we present an algorithm that pro-
duces low latency depth maps by using images, which are rou-
tinely collected alongside the TOF camera, to estimate a new
depth map without illuminating the scene. One application
that benefits from our approach is robotic navigation, where
a robot moves in a static environment (Figure 1) and uses the
estimated depth maps for tasks that include simultaneous lo-
calization and mapping (SLAM) [2] or obstacle avoidance.

t=1 t=0 t=1

Im
ag
e

De
pt
h

t=2

Fig. 1: Causal Depth Estimation The TOF camera is used
to obtain the first depth map, and all subsequent depth maps
are estimated using the concurrently captured images. This
minimizes the usage of the TOF camera’s illumination source
and the total power required for depth sensing.

The idea of using image data to estimate depth has been
previously used to increase the frame rate of depth video. In
these scenarios, images are captured at higher frame rates than
depth maps, and different approaches estimate depth maps
for images without any corresponding depth. The authors of
[3, 4, 5, 6] use the block-wise correspondences between the
images without depth and those with it (from both the pre-
ceding and following frames) to identify the depth values to
average. This process is repeated for non-overlapping blocks,
resulting in a low estimation frame rate. In contrast, our tech-
nique is causal and uses only a previously measured depth
map along with the image data to obtain a new depth map.
We also assume that objects in the scene are rigid, and we
exploit this assumption to produce depth maps in real time,
or 30 frames per second (FPS), on a low power embedded
platform, which has limited compute resources.

Our contribution is an algorithm for depth estimation that

1. Reduces the total power required for depth sensing in
TOF cameras

2. Is causal and has low latency
3. Produces dense depth maps in real time (30 FPS)

2. DEPTH MAP ESTIMATION

Our approach takes as inputs a pair of consecutive images
and a previous depth map that is synchronized with the first
image. The algorithm then outputs a new depth map that cor-
responds to the second image. While our approach can be

Depth	Map

t=0
Estimated
Depth	Map

t=1
u,v 𝒕,𝝎

Camera	Motion	
Estimation

Optical	Flow	
Estimation Depth	Map	

Reprojection

t=1

Images

t=0

Fig. 2: Depth Estimation Pipeline Our algorithm estimates
the camera motion using optical flow and uses the camera mo-
tion estimate to obtain a new depth map.

used to estimate the depth for any rigid object, we focus on
the scenario shown in Figure 1, where the difference between
depth maps is caused by the camera motion. Figure 2 depicts
the pipeline of our technique. Our approach for depth map
estimation is inspired by [7], which estimates camera motion
up to a scale factor. However, our work is different because it
uses the previously measured depth map to estimate the actual
camera motion and then obtains a new depth map.

2.1. Optical Flow Estimation

Optical flow is the apparent motion of the pixels across im-
ages. There are several approaches to estimate optical flow.
However, many of these algorithms are computationally ex-
pensive [8] and are unsuitable for low power embedded plat-
forms, which have limited compute resources.

With complexity in mind, we used block matching to es-
timate optical flow. Block matching algorithms estimate the
optical flow for a pixel by taking a block centered on that pixel
and searching the consecutive image to find the best matching
block according to some criterion. In our implementation, we
performed block matching using 16×16 blocks and searched
a 48 × 48 region centered on each block in the consecutive
image to find the matching block that maximized the normal-
ized correlation score. Our algorithm only requires optical
flow at a sparse set of points, and consequently, we use block
matching for pixels separated by a stride of 80 pixels. For
640× 480 images, this means that our algorithm uses at most
48 optical flow estimates to obtain a dense depth map, which
enables our implementation to run in real time.

2.2. Camera Motion Estimation

To estimate the camera motion, we invert a model that relates
how 3D objects in the scene are captured in a 2D image. We
assume that objects in the scene are captured onto the pixels
of an image under perspective projection. We orient the cam-
era’s coordinate system such that its origin is at the center of
projection, its Z-axis is parallel to the optical axis, and the
X and Y axes are parallel to that of the image plane. This
assumption makes the Z-coordinate of each point equal to its
distance from the camera, which is approximately measured

by the TOF camera.
Under these assumptions, a point in the scene located at

(Xi, Yi, Zi) is projected to the ith pixel located at (xi, yi) in
the image such that

xi

f
=

Xi

Zi

yi
f

=
Yi

Zi
(1)

where f is the focal length. As the camera moves, the objects
are projected onto different pixel locations in a new image that
depend on both the camera motion and the objects’ distances
from the camera. This can be seen by differentiating Eq. (1)
with respect to time and rearranging the terms to obtain the
following relationship

ui = ẋi =
fẊi − xiŻi

Zi
vi = ẏi =

fẎi − yiŻi

Zi
(2)

which relates the optical flow of the ith pixel, which is denoted
by ui and vi, to the motion of its corresponding 3D point,
which is represented by Ẋi, Ẏi, and Żi.

Given the inputs to our algorithm, we can compute Xi,
Yi, and Zi for each pixel in the first image. Using Ẋi, Ẏi,
and Żi, we can then compute the 3D coordinates of the points
that correspond to the pixels in the second image and obtain
the new depth map. However, without any further assump-
tions, the task of estimating Ẋi, Ẏi, and Żi for each pixel is
underdetermined. Here, we use the fact that only the camera
is moving and treat the scene as a rigid body. Each 3D point
then moves relative to the camera with a velocity given byẊi

Ẏi

Żi

 = −

UV
W


︸ ︷︷ ︸

t

−

AB
C


︸ ︷︷ ︸

ω

×

Xi

Yi

Zi

 (3)

where t and ω are the translational and angular velocities of
the camera in 3D space, respectively. Combining Eq. (2) and
Eq. (3), we have the following constraints between the optical
flow and camera motion for each pixel in the image

ui = −
fU

Zi
+

xiW

Zi
+A

(
xiyi
f

)
−B

(
f +

x2
i

f

)
+ Cyi︸ ︷︷ ︸

ûi(t,ω)

(4)

vi = −
fV

Zi
+

yiW

Zi
+A

(
f +

y2i
f

)
−B

(
xiyi
f

)
− Cxi︸ ︷︷ ︸

v̂i(t,ω)

(5)
To solve for t and ω, we use least-squares minimization to
minimize the objective function

J(t,ω) =

N∑
i=1

(ui − ûi(t,ω))
2
+ (vi − v̂i(t,ω))

2 (6)

where N is the number of pixels where the optical flow is
known.

2.2.1. Outlier Rejection

Given the limited compute resources on low power embedded
platforms, our algorithm uses block matching to estimate op-
tical flow. These optical flow vectors are susceptible to errors
when there is obstruction between images, when the pixels in
a block have different displacements, and when there is am-
biguity as to the best match. As such, there is a need to reject
these outliers before we estimate t and ω. To do so, we first
eliminate the estimates that are obtained from blocks with low
normalized correlation scores. We empirically found that 0.5
was a sufficient threshold. We then used RANSAC [9] to ro-
bustly estimate t and ω. In our implementation, we found
that 100 RANSAC iterations was sufficient to obtain accurate
depth maps.

2.3. Depth Map Reprojection

After t and ω are estimated, we reproject the previous depth
map to obtain a new one. To do this, we first obtain the 3D
coordinates for each point in the previous depth map using
Eq. (1). Then, we find the new coordinate of each point by
applying its displacement, which is computed using Eq. (3).
Finally, to obtain the new depth map, we reproject the Z-
component of each point to a new pixel location obtained
using Eq. (1). For points that reproject onto the same pixel
position, we choose the smallest value of Z. This approach
may introduce holes into the estimated depth map, and ap-
proaches like median filtering can be used to fill them in. In
our implementation, we skipped this post-processing step be-
cause these holes were negligible and the infilling algorithms
substantially reduced our estimation frame rate.

3. ALGORITHM EVALUATION

3.1. Test Setup

We evaluated our approach on sequences from the TUM
RGB-D dataset [10], which contains images and depth maps
captured for various camera trajectories in static scenes. Be-
cause the images and depth maps are not synchronized, we
associated the images with depth maps by finding the clos-
est match in terms of their timestamps. We used the default
intrinsic parameters to obtain the focal length and principal
point. To evaluate our approach, we estimated the depth maps
sequentially for the first five frames of each sequence. We
used the first measured depth map to predict the second depth
map. For all subsequent frames, we used the estimated depth
maps instead of what was measured.

We quantified the performance of our algorithm by com-
puting the mean relative error (MRE) between our estimated
depth map and what was measured in the dataset for overlap-
ping pixels. The MRE weighs depth errors at distances close
to the TOF camera more than the same depth errors at fur-
ther distances and is a common metric used to evaluate depth

Depth Frame
Sequence 2 3 4 5

freiburg1 360 0.51 0.50 0.72 0.81
freiburg1 desk 0.98 1.53 5.61 11.80
freiburg1 floor 0.33 0.50 0.51 0.36
freiburg1 room 0.62 0.84 0.86 1.09
freiburg1 xyz 1.01 1.69 1.22 1.09

Mean 0.69 1.01 1.78 3.03
Median 0.62 0.84 0.86 1.09

Table 1: Mean MRE Each cell is obtained by averaging the
results of 100 experiments. The shaded cells are instances
of when our algorithm fails. However, these cases can be
detected by our approach and used to trigger the TOF camera
to obtain a new depth map.

estimates [11, 12]. We present the MRE in percentage form

MRE = 100 · 1
N

N∑
i=1

|Ẑi − Zi|
Zi

(7)

where Ẑi and Zi are the estimated and ground truth depth for
the ith pixel, respectively.

3.2. Results

Table 1 summarizes the MRE for each sequence. Since
RANSAC is nondeterministic, we averaged the MRE from
100 experiments for each cell. An example of an estimated
depth map is shown in Figure 3. In this example, we see the
holes, which cluster as curved lines, in the estimated depth
map. These areas are insignificant compared to the regions
(e.g. monitor screen) where depth was not measured in this
dataset and are consequently unavailable in the reprojected
depth map.

The shaded cells in Table 1 are examples of when the
depth map estimation algorithm fails. For these frames, the
search region of the block matching algorithm was too small
to capture the underlying camera motion. Because we se-
quentially estimated the depth maps, this error then propa-
gates to the fifth frame. A natural solution to this problem is to
increase the search region size, but this increases the compu-
tation for block matching and decreases the estimation frame
rate. Fortunately, this scenario can be detected by using the
number of inliers identified by RANSAC to trigger the illu-
mination source to obtain a reliable depth map. As a result
of this sequence, we provide both the mean and median MRE
across all sequences. Overall, the median MRE across all se-
quences and frames is 0.85%.

0

1

2

3

4

0

1

2

3

4

5

Image Estimated Depth (m) Relative Error (%)

Fig. 3: freiburg1 room The estimated depth map is shown
for the second frame of this sequence.

2 3 4 5
Depth Frame

0
1
2
3
4
5
6
7
8
9

10
11
12

M
R

E
(%

)

This Work
Threshold
All
Copy

Fig. 4: Method Comparison Median MRE across sequences
for different approaches described in Section 3.3.

3.3. Discussion

3.3.1. RANSAC Decreases the MRE of Estimated Depth Map

To obtain accurate depth maps, our technique rejects spuri-
ous optical flow estimates obtained by block matching using
thresholds and RANSAC. To demonstrate that this combi-
nation reduces the MRE, we compare it to the cases where
all of the optical flow estimates are used (All) and where
only a threshold is applied to select optical flow estimates
from blocks that have high normalized correlation scores
(Threshold). As one would expect, both our technique and
Threshold outperforms All. Our technique outperforms
Threshold because a high normalized correlation score does
not guarantee that the optical flow estimate is correct. For
example, optical flow is difficult to estimate in regions with
uniform brightness despite the normalized correlations scores
being high. In our approach, RANSAC eliminates these
outliers.

3.3.2. Algorithm Compensates For Camera Motion

To compare how our technique compensates for camera mo-
tion, we compare it to the case where the first depth map
is copied and used to predict all subsequent frames (Copy).
Copy has low latency and can be effective when the camera
motion is slow and the difference between consecutive im-
age frames is minimal. Figure 4 shows that this is not the
case for these sequences and shows that our algorithm com-
pensates for nontrivial camera motion as the gap between our
technique and Copy grows with time.

4. POWER CONSUMPTION IN PLATFORM

Optical Flow Estimation
Camera Motion Estimation
Depth Map Reprojection

Fig. 5: Computation Time
Breakdown

0 0.2 0.4 0.6 0.8 1
MRE (%)

1
1.5

2
2.5

3
3.5

4
4.5

5

Sy
st

em
 P

ow
er

 (W
)

Fig. 6: MRE vs Estimated
System Power

We implemented our algorithm on the ODROID-XU3
board, which has an Exynos 5422 processor [13]. Our imple-
mentation uses the Cortex-A7 cores and outputs 640 × 480
depth maps at 30 FPS. As shown in Figure 5, Camera Mo-
tion Estimation is efficient and, even with 100 RANSAC
iterations, constitutes only 4% of the computation time. Fur-
thermore, if only odometry is required, our algorithm runs at
96 FPS. Our implementation consumes a total of 678 mW, of
which 226 mW is the idle power. In contrast, the illumination
source of TOF cameras consumes 2-5 W [14, 15].

Using this measurement, we estimate the power of a hy-
brid TOF camera system, where we reduce the frequency of
the TOF camera usage and obtain depth using our technique.
Because digital cameras are often found on depth sensing de-
vices and images are routinely captured for other purposes,
we do not factor in their energy costs. As previously shown,
reducing the frequency of the TOF camera usage also reduces
the accuracy of the estimated depth map. We show this trade-
off in Figure 6 where we plot the median MRE against the
estimated system power, where each point represents differ-
ent frequencies of the TOF camera usage. Here, we see that
we can reduce the total power required for depth sensing by
3× while maintaining a median MRE of 0.85%.

5. CONCLUSION

We present an algorithm that reduces the power of TOF imag-
ing by using images to estimate a new depth map without
illuminating the scene. Our algorithm is computationally effi-
cient and causal, enabling dense depth map estimation in real
time on a low power embedded platform. When evaluated on
an RGB-D dataset, our algorithm produced depth maps with
a median MRE of 0.85% while reducing the total power re-
quired for depth sensing by 3×.

6. ACKNOWLEDGEMENTS

We thank Analog Devices for funding this work and the re-
search scientists in the company for helpful discussions.

7. REFERENCES

[1] Stan Zdonik, Peng Ning, Shashi Shekhar, Jonathan
Katz, and Xindong Wu, Time-of-Flight Cameras Prin-
ciples, Methods and Applications, 2013.

[2] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox,
“RGB-D mapping: Using depth cameras for dense 3D
modeling of indoor environments,” International Jour-
nal of Robotics Research, vol. 31, no. 5, pp. 647–663,
2010.

[3] Jinwook Choi, Dongbo Min, Bumsub Ham, and
Kwanghoon Sohn, “Spatial and temporal up-conversion
technique for depth video,” IEEE International Confer-
ence on Image Processing, pp. 3525–3528, 2009.

[4] Hung Ming Wang, Chun Hao Huang, and Jar Ferr
Yang, “Depth maps interpolation from existing pairs
of keyframes and depth maps for 3D video generation,”
IEEE International Symposium on Circuits and Systems,
pp. 3248–3251, 2010.

[5] Yanjie Li, Lifeng Sun, and Tianfan Xue, “Fast frame-
rate up-conversion of depth video via video coding,”
ACM Multimedia, p. 1317, 2011.

[6] Yongbing Zhang, Jian Zhang, and Qionghai Dai, “Tex-
ture aided depth frame interpolation,” Signal Process-
ing: Image Communication, vol. 29, no. 8, pp. 864–874,
2014.

[7] Anna R. Bruss and Berthold K. P. Horn, “Passive nav-
igation,” Computer Vision, Graphics, and Image Pro-
cessing, vol. 21, no. 1, pp. 3–20, 1983.

[8] Denis Fortun, Patrick Bouthemy, and Charles Kervrann,
“Optical flow modeling and computation: A survey,”
Computer Vision and Image Understanding, vol. 134,
pp. 1–21, 2015.

[9] Martin a Fischler and Robert C Bolles, “Random Sam-
ple Consensus: A Paradigm for Model Fitting with,”
Communications of the ACM, vol. 24, pp. 381–395,
1981.

[10] Jurgen Sturm, Nikolas Engelhard, Felix Endres, Wol-
fram Burgard, and Daniel Cremers, “A benchmark for
the evaluation of RGB-D SLAM systems,” IEEE Inter-
national Conference on Intelligent Robots and Systems,
pp. 573–580, 2012.

[11] Rene Ranftl, Vibhav Vineet, Qifeng Chen, and Vladlen
Koltun, “Dense Monocular Depth Estimation in Com-
plex Dynamic Scenes,” Conference on Computer Vision
and Pattern Recognition, pp. 4058–4066, 2016.

[12] Anirban Roy, “Monocular Depth Estimation Using
Neural Regression Forest,” Conference on Computer
Vision and Pattern Recognition, pp. 5506–5514, 2016.

[13] ODROID, “ODROID-XU3,” www.hardkernel.
com/main/products/prdt_info.php?g_
code=g140448267127.

[14] SoftKinetic, “DepthSense Camera — DS525
Datasheet,” www.softkinetic.com/Products/
DepthSenseCameras.

[15] Andrea Colaco, Ahmed Kirmani, Nan-wei Gong, Tim
Mcgarry, Laurence Watkins, and Vivek K Goyal, “3dim
: Compact and low power time-of-flight sensor for 3D
Capture using parametric signal processing,” Interna-
tional Image Sensor Workshop, pp. 349–352, 2013.

www.hardkernel.com/main/products/prdt_info.php?g_code=g140448267127
www.hardkernel.com/main/products/prdt_info.php?g_code=g140448267127
www.hardkernel.com/main/products/prdt_info.php?g_code=g140448267127
www.softkinetic.com/Products/DepthSenseCameras
www.softkinetic.com/Products/DepthSenseCameras

	 Introduction
	 Depth Map Estimation
	 Optical Flow Estimation
	 Camera Motion Estimation
	 Outlier Rejection

	 Depth Map Reprojection

	 Algorithm Evaluation
	 Test Setup
	 Results
	 Discussion
	 RANSAC Decreases the MRE of Estimated Depth Map
	 Algorithm Compensates For Camera Motion

	 Power Consumption in Platform
	 Conclusion
	 Acknowledgements
	 References

