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Video is the Biggest Big Data

Over 70% of today’s Internet traffic is video
Over 300 hours of video uploaded to YouTube every minute
Over 500 million hours of video surveillance collected every day
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Energy limited due Power limited due
to battery capacity to heat dissipation

Need energy-efficient pixel processing!
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Typical Constraints on Video Compression

Area cost: Memory Size of 100-500kB, ~1000kgates

* Power budget: < 1W for smartphones

* Throughput: Real-time 30 fps

¢ E n e rgy: ~ 1 nJ / p ixe I DO00O00D000O0DOOCCEOOE D)
[ISSCC 2014]
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Decoder Encoder Decoder Encoder
(45nm) (45nm) (40nm) (28nm)

[ISSCC 2012] [ISSCC 2012] [ISSCC 2013] [VLSI 2013]
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Object Detection/Classification Pipeline

Trained weights (w)

!

Feature Features (x) Classification Scores>
Extraction J- < (W'x)
— = Scores per class
- Sseo (select class based
‘*ssgn max or threshold)
.~~~ Handcrafted Features Learned Features  ~~o
(e.g. HOG) (e.g- CNN)

This talk will focus on the Feature Extraction cost
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Compare HOG vs. CNN

Compare using measured results from test chips (65 nm)
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Object Detection using HOG features Eyeriss: Convolutional Neural
and Deformable Parts Models Networks
[VLSI 2016] [ISSCC 2016, ISCA 2016]

LR
M Qe iosearcHiasorarory  MITL @@ @

microsystems technology laboratories




Bl Hand-crafted Features (HOG)

HOG = Histogram of Oriented Gradients
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Input Image

Bin 1
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Cell Histogram
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Energy-Efficient Object Detection
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MIT Object
Detection Chip
[VLSI 2016]

Enable object detection to be as energy-efficient as
Energy video compression at < 1nJ/pixel

H.264/AVC H.264/AVC H.265/HEVC H.265/HEVC HOG Object DPM Object
Decoder Encoder Decoder Encoder Detection Detection



] Deep Convolutional Neural Networks

Modern deep CNN: up to 1000 CONYV layers
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BN CONV
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Low-level Al

Features

High-level
Features

Feature Extraction
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Il Deep Convolutional Neural Networks

1 -3 layers

Features

Classification
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Deep Convolutional Neural Networks

CONV FC
Layer Layers

Convolutions account for more
than 90% of overall computation,
dominating runtime and energy
consumption
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High-Dimensional CNN Convolution
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Large Sizes with Varying Shapes

AlexNet! Convolutional Layer Configurations

Layer | Filter Size (R) | # Filters (M) | # Channels (C) | Stride

1 11x11 96 3 4

2 5x5 256 48 1

3 3x3 384 256 1

4 3x3 384 192 1

5 3x3 256 192 1

Layer 1 Layer 2 Layer 3

34k Params 307k Params 885k Params
105M MACs 224M MACs 150M MACGs

i 1. [Krizhevsky, NIPS 2012] seeenginl MRS e




Properties We Can Leverage

* Operations exhibit high parallelism
- high throughput possible
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Properties We Can Leverage

* Operations exhibit high parallelism
- high throughput possible

* Memory Access is the Bottleneck

Memory Read : MAC’ . Memory Write
filter Weiqht§ A ALU
image pixel: ®
partial sum : ( : ;gi?e;[le:um >

* multiply-and-accumulate
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Properties We Can Leverage

* Operations exhibit high parallelism
- high throughput possible

* Memory Access is the Bottleneck

Memory Read MAC’ Memory Write
filter Wei.qht A ALU
DRAM Ll updated__
200x 1x

Worst Case: all memory R/W are DRAM accesses

« Example: AlexNet [NIPS 2012] has 724M MACs
- 2896M DRAM accesses required
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Highly-Parallel Compute Paradigms

Temporal Architecture Spatial Architecture
(SIMD/SIMT) (Dataflow Processing)

Memory Hierarchy Memory Hierarchy
Register File
ALU ALU ALU ALU
ALU ALU ALU ALU

A 4 A 4 A 4 A 4
ALU ALU ALU ALU

A 4 A 4 A 4 A 4

ALU ALU ALU ALU
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Advantages of Spatial Architecture

Spatial Architecture
(Dataflow Processing)

Efficient Data Reuse Memory Hierarchy

Distributed local storage (RF)

Inter-PE Communication
Sharing among regions of PEs

Processing
Element (PE)

0.5-1.0kB Reg File

Control
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Data Movement is Expensive

Off-Chip
DRAM

Global

Buffer

Accelerator

Processing Engine

PE 4 PE
¢
PE ALU

PE

bem

ALU

ALU

ALU

ALU

ALU

Data Movement Energy Cost

2%
1%

/| 200

6x

1% (Reference)

Maximize data reuse at lower levels of hierarchy




Optimization to Reduce Data Movement

* Energy-efficient dataflow to reduce data movement

* Exploit data statistics for high energy efficiency

Row Stationary Dataflow

PE 2 PES5 PE 8
Row2j; Row2 |M|Row2jy Row3 |M[Row2j Rowd
PE 3 PE 6 PE 9

Row3y Row3 |M[Row3y Row4 |W/Row3y Row5

ExH =0 Bl -0 @ExF=-8

DRAM
Access
(mB)

Sparsity in Activations

Apply Non-Linearity (ReLU) on Filtered Image Data
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RelU
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AlexNet Conv Layer

i [Chen et al., ISCA 2016, ISSCC 2016]
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Eyeriss Deep CNN Accelerator

Link Clock' Core Clock DCNN Accelerator
_“I
| 14%x12 PE Array
. Filter Filt
' Inputimage [N Img
I Jecomop A
Psum

Sl Psum

Output Image ERY:

64 bits
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Eyeriss Chip Spec & Measurement Results

Technology

TSMC 65nm LP 1PSM

On-Chip Buffer

108 KB

# of PEs

168

Scratch Pad / PE

0.5 KB

Core Frequency

100 — 250 MHz

Peak Performance

33.6 — 84.0 GOPS

Word Bit-width

16-bit Fixed-Point

Natively Supported
CNN Shapes

Filter Width: 1 — 32

Filter Height: 1 - 12
Num. Filters: 1 — 1024
Num. Channels: 1 — 1024
Horz. Stride: 1-12

Vert. Stride: 1,2, 4

< 4000 um s
| @ e 7.T4ﬁﬁ_‘_

Over 10x more energy efficient than a mobile GPU (Nvidia TK1) ‘

[Chen et al., ISSCC 2016]
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Features: Energy vs. Accuracy

Exponential
1000
2
Energy/ 100 + AlexNet
Pixel (nJ)
. 10 :
Measured in 65nm* Video
1. [Suleiman, VLSI 2016] Compression
2. [Chen, ISSCC 2016] 1 - HOG!
Linear
* Only feature extraction. Does 0.1 : : : |
not include data, augmentation,
ensemble and classification 0 20 40 60 80

energy, etc.

Accuracy (Average Precision)

Measured in on VOC 2007 Dataset
1. DPM v5 [Girshick, 2012]
2. Fast R-CNN [Girshick, CVPR 2015]
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HOG vs. CNN: Hardware Cost

<« 4000 pm — <« 4000 pm —

= [ S
S | S
g - g -
3 3
HOG [VLSI 2016] CNN [ISSCC 2016]
Technology TSMC LP 65nm TSMC LP 65m
Gate Count (kgates) 893 1176
Memory (kB) 159 181.5

Similar Hardware Cost (comparable with Video Compression)
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HOG vs. CNN: Throughput

< 4000 ym —

«— 4000 ym —

— wn ooy —>

HOG CNN (AlexNet) | CNN (VGG-16)
Throughput 62.5 1.8 0.04
(Mpixels/s)
GOP/Mpixel 0.7 25.8 610.3
Throughput 46.0 46.2 214
(GOPS)

Throughput gap explained by GOP/Mpixel gap
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HOG vs. CNN: Energy and DRAM Access

«— 4000 ym —

< 4000 ym —
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HOG CNN (AlexNet) | CNN (VGG-16)
Energy (nJ/pixel) 0.5 155.5 6742.9
GOP/Mpixel 0.7 25.8 610.3
Energy (GOPS/W) 1570 166.2 90.7
DRAM (B/pixel) 1.0 4.7 2128.6
Energy gap larger than GOPS/W gap
1"ir LS R L L —
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Energy Gap between CNN and HOG

* CNNs require more operations per pixel
— AlexNet vs. HOG = 37x
— VGG-16 vs. HOG = 872x

* CNN requires a programmable architecture

— Example: AlexNet CONV layers have 2.3M weights (assume 8-bits
per weight); Area budget of HOG chip is ~1000 kgates, 150kB

— Design A: Hard-wired weights
* Only have 10k multipliers with fixed weights (>100x increase in area)

— Design B: Store all weights on-chip

* Only store 150k weights on chip (>10x increase in storage)

— Support different shapes per layer and different weights
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Closing the Energy Gap
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Methods to Reduce Energy of CNNs

Reduce Precision

— [Google TPU, ISCA 2017], [XNOR-
Net, ECCV 2016], [BinaryNets,
arXiv 2016]

e Sparsity by Pruning

* Data Compression Google’s TPU (8-bits)
— [Chen, ISSCC 2016], [Han, ISCA

Binary Filters
2016], [Moons, VLSI 2016] H _l
H N
* Energy Optimized Dataflow O :

— [Chen, ISCA 2016] « B

a FE s 0O
L r n b
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Pruning — Make Weights Sparse

Prune based on magnitude of weights

before pruning after pruning [ b

Train Connectivity
- y

2

( )

pruning
synapses

-—>

Prune Connections K2\

pruning & J
neurons > @
N
{ Train Weights [/
Y,

Example: AlexNet

Weight Reduction: CONYV layers 2.7x, FC layers 9.9x
(Most reduction on fully connected layers)

Overall: 9x weight reduction, 3x MAC reduction

T [Han et al., NIPS 2015] sty MILeee .
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Key Metrics for Embedded DNN

* Accuracy 2 Measured on Dataset

* Speed 2 Number of MACs

* Storage Footprint 2 Number of Weights
* Energy 2 ?
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Energy-Evaluation Methodology

4

CNN Shape Configuration
(# of channels, # of filters, etc.)

Hardware Energy Costs of each
MAC and Memory Access

# acc. at mem. level 1

Memory # acc. at mem. level 2

Accesses

CNN Weights and Input Data

Optimization # acc. at mém. level n Ejata
# of MACs # of MACs Ecomp S
Calculation
v
Energy T
_I >
[0.3,0,-04,0.7,0,0,0.1, ...] 1213

[Yang et al., CVPR 2017]

CNN Energy Consumption

llifr Energy estimation tool available at http://eyeriss.mit.edu L LI L S
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Energy-Aware Pruning

93%

91% ResNet-50 @ et
> _
(8]

o 89% ® GoogleNet ®
§ 87% GoogleNet m
<
"3_ 85%
2 83%
0 1.74x SqueezeNet
81% A
0 i AlexNet@ @SqueezeNet
799% AlexNet®  alexNet SqueezeNet
77%
5E+08 5E+09 5E+10

Normalized Energy Consumption

® Original DNN 4 Magnitude-based Pruning ~ ® Energy-aware Pruning (This Work)

Remove weights from layers in order of highest to lowest energy
3.7x reduction in AlexNet / 1.6x reduction in GooglLeNet

i [Yang et al., CVPR 2017] o MIL®eS .
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Summary

 CNN gives higher accuracy than HOG features (2x) at the cost
of increase energy (311x to 13486x)

* Energy gap due to (1) CNN requires more operations per pixel
and (2) CNN requires a programmable architecture

 Joint algorithm and hardware design can deliver additional
energy savings to help close this gap
[=];

[=]

V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, “Efficient Processing of Deep Neural

Networks: A Tutorial and Survey”, arXiv, 2017
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More info about Eyeriss and Tutorial on DNN
Architectures at http://eyeriss.mit.edu




