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Abstract

State-of-the-art super-resolution (SR) algorithms require
significant computational resources to achieve real-time
throughput (e.g., 60Mpixels/s for HD video). This paper in-
troduces FAST (Free Adaptive Super-resolution via Trans-
fer), a framework to accelerate any SR algorithm applied
to compressed videos. FAST exploits the temporal corre-
lation between adjacent frames such that SR is only ap-
plied to a subset of frames; SR pixels are then transferred
to the other frames. The transferring process has negli-
gible computation cost as it uses information already em-
bedded in the compressed video (e.g., motion vectors and
residual). Adaptive processing is used to retain accuracy
when the temporal correlation is not present (e.g., occlu-
sions). FAST accelerates state-of-the-art SR algorithms by
up to 15× with a visual quality loss of 0.2dB. FAST is an
important step towards real-time SR algorithms for ultra-
HD displays and energy constrained devices (e.g., phones
and tablets).

1. Introduction

Video content can often have lower resolution than the

display, either due to the fact that there is limited commu-

nication bandwidth, or that the resolution of displays rises

faster than the resolution at which video content is captured.

Thus, upsampling needs to be performed to match the reso-

lution of the content to the display.

Today, most televisions perform upsampling using sim-

ple interpolation plus a sharpening filter [1]; these single

frame upsamplers, such as bicubic, sinc, Lanczos, Catmull-

Rom [2], Mitchell-Netravali [3] are based on simple splines

to enable real-time throughput. Super-resolution (SR) can

deliver higher visual quality than this by exploiting the

non-local similarity of patches or by learning the mapping

from the low-resolution to high-resolution from external

datasets [4]. However, SR algorithms are computationally

more expensive and slower than simple filtering. For in-

stance, state-of-the-art neural network based SR algorithms

(e.g., SRCNN [5]) require powerful GPUs that consume

hundreds of watts to achieve real-time performance [6, 7].

As a result, state-of-the-art SR algorithms are typically not

used in televisions and portable screens as their high com-

putational complexity limits their throughput and results in

high power consumption (e.g., the power consumption of

portable devices is limited to a few watts).

To bridge this gap, this paper proposes a technique called

Free Adaptive Super-resolution via Transfer (FAST) to ac-

celerate existing SR algorithms. Our approach is inspired

by many concepts from the area of video coding research.

In particular, numerous techniques have been developed in

video coding research to identify correlations between pix-

els in videos. As a result, a compressed video is comprised

of a compact description of the structure and correlation of

the pixels in the video.

The main contribution of this paper is a framework that

can leverage this structure information that is available for

free in the compressed video to accelerate image process-

ing, specifically super-resolution. FAST uses this free pre-

computed information in two different ways:

1. It uses the motion vectors to exploit the inter-frame

similarities between adjacent frames in a video se-

quence. As a result, it can transfer the SR result from

one frame to the other such that SR is only applied to a

subset of frames. Since the compressed video already

provides the correlation information for free, the trans-

fer step has negligible run time and computation cost

compared with the original SR algorithms. Figure 1(a)

illustrates the main steps of FAST. It should be noted

that the transfer step can introduce visual degradation,

as motion compensation in video coding is not perfect.

In this work, we propose several visual quality met-

rics that are easy to compute, and then adaptively en-

able and disable the transfer on a block-by-block basis

based on these metrics.

2. FAST uses the non-overlapping block structure em-

bedded in the compressed video, rather than the over-
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Figure 1. (a) SR with FAST: From the compressed video (1), the video decoder decompresses the low-resolution video frames (2) and

the syntax elements (3). The SR algorithm generates the high resolution output for the first frame (4). Guided by the syntax elements

(3), FAST adaptively transfers blocks from the first frame (4) to the second frame (5) rather than applying super-resolution on the second

frame. (b) Visual quality results: Running SRCNN with FAST preserves the rich high frequency details that SRCNN generates compared

with the blurry output of bicubic interpolation. Note that the complexity of FAST is comparable to bicubic interpolation on most of the

transferred frames.

lapping blocks traditionally used for SR; using non-

overlapping blocks accelerates the processing relative

to the overlapping blocks. One of the drawbacks from

non-overlapping blocks is that it can result in block ar-

tifacts. To address this, an adaptive deblocking filter is

applied at the block edges to remove the block artifacts

while retaining the true edges in the video.

We demonstrate the FAST framework acceleration us-

ing three well-known SR algorithms (KRR [8], ANR [9],

SRCNN [5]) on the 20 video sequences that were used in

the development of the latest video compression standard

H.265/HEVC [10]; these sequences cover a wide range of

videos including natural and screen content. On these se-

quences, FAST delivers up to 15× acceleration with around

0.2dB drop in PSNR. Figure 1(b) shows how FAST main-

tains the visual quality of the super-resolution using SR-

CNN, which is significantly better than the bicubic upsam-

pled result, even though the complexity of FAST is com-

parable to bicubic upsampling on most of the transferred

frames. A demo video is available at [11].

2. Related Work on Super Resolution
There are two forms of super-resolution (SR) algorithms:

single frame and multiple frame. Single-frame based SR

algorithms are applied to each video frame independently,

while multi-frame based SR algorithms are applied to mul-

tiple frames in a small time window. FAST can be applied

to either SR approach.

Sophisticated single-frame based SR algorithms often

leverage machine learning techniques [12, 13]. Among

them are sparse-representation [14, 15], Kernel Ridge

Regression (KRR) [8], anchored neighbor regression

(ANR) [9], and in-place example regression [16]. Recently,

deep convolutional neural networks (CNNs) have been used

to perform super-resolution (e.g., SRCNN [5, 17]). They

achieve state-of-the-art results at the cost of high computa-

tional complexity; for instance, the three convolutional lay-

ers in SRCNN [5] require 8032 multiplications per pixel,

which is significantly higher than simple interpolation with

one filter. While CNNs can be accelerated by powerful

GPUs to achieve real-time performance on high-definition

videos (1920 × 1080) [6, 7], these GPUs consume several

hundred watts and are not suitable for embedding into tele-

visions and portable devices (e.g., phones, tablets).

There are also SR algorithms that exploit the self-

similarities of blocks within each image [18, 19]. The

proposed FAST framework shares many common insights

with in-place example regression [16], which performs lo-

cal block prediction inside the same frame; the important

distinction is that FAST uses predictions across frames,

which has negligible cost when exploiting embedded infor-

mation in the compressed videos.

Multiple-frame based super-resolution algorithms are

largely based on the registration of neighboring frames [20].

Many of these algorithms are iterative, including the

Bayesian based approach [21], and the �1-regularized to-

tal variation based approach [22]. At the same time, there

are non-iterative methods that avoid registration with non-

local mean [23], 3D steer kernel regression [24], and self-

similarity [25]. Deep neural networks can also be used

in the form of bidirectional recurrent convolutional net-

works [26], and deep draft-ensemble learning [27]. Spatial-



temporal coherence of multiple-frame based SR is ad-

dressed in [28] and [29]. Similar to this work, motion com-

pensation is also used in [29] with two key differences: (1)

both the original and motion compensated frames are fed

into the neural network, while in FAST only the first frame

is processed by the neural network; (2) the motion vec-

tors are explicitly computed with optical flow, while FAST

uses the motion vectors embedded in the compressed video.

Thus, techniques proposed in FAST could potentially help

accelerate [29].

3. Video Coding Basics
The FAST framework is inspired by many concepts from

video coding research; in particular, the use of temporal cor-

relation and the adaptive block-based processing. Temporal

correlation is used in video coding during a process called

motion compensation. Motion compensation is widely used

in popular video coding standards including MPEG-2 [30],

used for HDTV broadcast; H.264/AVC [31], used for most

video content on the Internet; and H.265/HEVC [32], the

most recent standard. Motion compensation involves pre-

dicting a block of pixels in the current frame from a block of

pixels in a temporally-adjacent, previously-encoded frame.

During compression, videos are divided into non-

overlapping blocks and encoded on a block-by-block basis.

At the video encoder, motion estimation is used to deter-

mine which block of pixels in the previously encoded frame

would best match the current block for minimum predic-

tion error. As a result, the encoder only needs to signal

the small difference between the two blocks, which typi-

cally requires fewer bits than signaling the original pixels;

this difference is referred to as the residual. The offset be-

tween the location of the source block in the previous frame

and the location of the target block in the current frame is

called a motion vector. Both the residual and motion vec-

tor are part of the syntax elements that are embedded in the

compressed video to express the structure of the video as

shown in Figure 1(a). The video decoder uses these syntax

elements to reconstruct the video; for instance, the motion

compensation at the decoder uses the motion vector to de-

termine which pixels to use from the previously encoded

frame to generate the source block, and adds the residual to

reconstruct the target block.

Video encoders divide up a video into sets of frames

called group-of-pictures (GOP); motion compensation is

then applied to frames within the same GOP. Each GOP

typically contains between 6 to 16 frames that are visually

similar with no scene transitions [33]. FAST will use the

GOP size to define the maximum distance for transfer. The

blocks of pixels in the first frame of a GOP are encoded

by only exploiting spatial correlation (i.e., correlation with

neighboring pixels within the frame), which is referred to

as intra-predicted blocks; these frames are referred to as

I frames. The subsequent frames are primarily composed

of blocks that exploit temporal correlation, referred to as

motion compensated blocks; these frames are referred to as

P frames and may contain some intra-predicted blocks in

cases of low temporal correlation.

4. FAST Framework
The FAST framework consists of the following features:

• Transfer SR pixels using motion compensation

• Adaptive transfer to retain visual quality (i.e., PNSR)

• Apply SR to non-overlapping blocks and remove block

artifacts with an adaptive deblocking filter

4.1. Transfer using Motion Compensation

To perform a transfer, the SR pixels are copied based

on the scaled motion vector to the previous frame; here,

the scaled motion vector refers to the fact that the motion

vector extracted from the compressed video is multiplied by

2× if FAST is performing a 2× upsampling. If the scaled

motion vector is fractional, an interpolation filter is applied

to the SR pixels; FAST uses the same interpolation filter

as the one used for fractional motion vectors during motion

compensation for video decompression [34]. The residual

is upsampled using bicubic interpolation and added to the

transferred SR pixels.

Recall that the video encoder uses intra-prediction for

blocks when there is not sufficient temporal correlation. In

these cases, transfer using motion compensation cannot be

used. However, with the exception of the first frame in

the GOP (an I frame), intra-predicted blocks rarely occur

in the subsequent P frames; this makes sense, as otherwise

it would lead to poor coding efficiency of the video. Since

there are few intra-predicted blocks, FAST upsamples them

with bicubic upsampling.

In summary, FAST only applies the expensive SR pro-

cessing on the first frame of a GOP (except when the trans-

fer needs to be reset as discussed in Section 4.2.2). For all

other frames in the GOP, FAST uses lightweight process-

ing such as interpolation and bicubic upsampling. Since a

typical GOP size is on the order of 6 to 16 frames [33], the

majority of the frames are accelerated with lightweight pro-

cessing; the overall acceleration depends on the GOP size.

Section 5 reports the visual quality impact and acceleration

of FAST for various GOP sizes and video sequences.

4.2. Adaptive Transfer

Transferring using motion compensation is not perfect.

Error is introduced due to (1) poor temporal correlation

where the motion compensated SR pixels are not good pre-

dictors; (2) the upsampling of the residual using bicubic in-

terpolation does not account for potential high frequency



components in the prediction error. The error from adap-

tive transfer is more noticeable when the quantization used

during compression is low since there are more high fre-

quency components in the residual that are not preserved

by the bicubic interpolation.

Figure 2(a) shows an example of when the error from the

transfer, specifically the bicubic upsampling of the resid-

ual, can cause ringing artifacts. These types of errors oc-

cur when the source block has a sharp edge and the target

block should be smooth; this mismatch between source and

target can occur due to the rate-distortion optimization in

the video encoder [35], where both the visual quality and

the bits of the syntax elements must be considered (e.g.,

trade-off fewer bits for the motion vector for more distortion

and larger residual). The bicubic upsampling smooths out

the sharp edge in the residual, which results in an incorrect

sharp edge in reconstructed output as shown in Figure 2(b).

4.2.1 Deciding which blocks to transfer

In order to maintain visual quality, only a subset of the

blocks in a frame are transferred. These blocks are adap-

tively selected based on the magnitude of the residual; note

the value of the residual can be obtained for free from the

video decoder. Specifically, transfer is disabled for blocks

with large residuals (i.e., mean absolute value of their resid-
ual); these disabled blocks are upsampled with bicubic in-

terpolation. A threshold η is used to detect this blocks; the

value of η is trained on the Middlebury stereo dataset [36]

to maximized the PSNR across all blocks. In all the exper-

iments presented in this paper, we set η = 10. Figure 2(a)

shows how this simple threshold avoids the ringing artifact

in the FAST result; this approach increases the PSNR by

around 0.17dB. Unlike other approaches that use threshold-

ing for acceleration [16, 37], FAST uses thresholding to im-

prove visual quality.

4.2.2 Deciding when to reset transfer

While the residual error may be low for a given frame, it can

accumulate as the number of transferred frames increase.

This is due to the fact that the frames can be chained in a

I-P-P-P GOP structure. Thus, the transfer should also be

adaptively reset when the accumulated error gets too large.

This accumulated error needs to be carefully modeled as it

involves the interaction of error in different frames. As dis-

cussed earlier, the upsampling of the residual using bicubic

interpolation does not account for potential high frequency

components in the prediction error; accordingly, we use the

Laplacian of the residual which has a higher correlation

(0.484) with the PSNR drop compared with other metrics

such as the magnitude of the residual (0.321). Thus the ac-

cumulated high frequency error can be modeled as the ac-

cumulated error of its source block from the previous frame

plus the Laplacian of the residual for the target block in the

current frame. This computation only involves simple fil-

tering with a Laplacian filter and an addition to accumulate

the error. When this error exceeds a given threshold, the

transfer is reset, and the accumulated error is reset to zero.

The reset involves applying super-resolution on the low

resolution decoded block and thus has an impact on the

overall throughput. Sweeping the reset threshold gives an

accuracy versus speed trade-off which is discussed in Sec-

tion 5 and shown in Figure 7.

4.3. Non-Overlapping Blocks

Most existing SR algorithms divide an image into

densely overlapped blocks, and average the outputs of these

overlapped blocks to avoid discontinuities at the block

boundaries. This is computationally expensive since each

pixel in a frame is processed multiple times since it belongs

to multiple blocks [13, 14, 16, 37]. In contrast, video coding

uses non-overlapping block, as shown in Figure 3(a), so that

each pixel is covered by exactly one block. FAST uses this

non-overlapping block structure, where each pixel is only

processed once, which significantly reduces the computa-

tional complexity of the transferred frames.

The drawback of using non-overlapping blocks is that it

can introduce artificial edges at the block boundaries. FAST

addresses this by applying an adaptive deblocking filter,

specifically the one used in H.265/HEVC [38], on the block

edges; adaptive deblocking filters are widely used in video

coding and have been shown to give similar visual qual-

ity [34] as using overlapped blocks [39]. The main objec-

tive of the deblocking filter is to remove the artificial edges

on the block boundary due to non-overlapping block-based

coding while keeping the true edges. Adaptive processing

is used to decide whether to apply the deblocking filter to

each block edge, and if so, decide the smoothing strength

of the filter. This decision is based on the differences in

coding mode and pixels on both sides of the block bound-

ary including motion vectors, whether intra-prediction was

used, the number of non-zero coefficients, the amount of

quantization, and the variations of the pixels [38].

Using the H.265/HEVC deblocking filter to remove the

artificial edges, as shown in Figure 3(b), increases the PSNR

of the output by around 0.3dB, which is only 0.03dB less

than using SRCNN with overlapping blocks. At the same

time, using non-overlapping blocks can give over an or-

der of magnitude speed up as compared using overlapping

blocks (e.g., each pixel in the first convolutional layer of

SRCNN is processed 81 times). The deblocking filter is

lightweight, and accounts for only 17% of the video decoder

processing time on an ARM CPU [40], and only 3% of

the video decoder power consumption in specialized hard-

ware [41].
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Figure 2. (a) Adaptive transfer avoids the ringing artifact in flat areas of the output of non-adaptive transfer. (b) Sharp edges in the residual
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Figure 3. (a) An image is adaptively divided into non-overlapping

blocks, with larger blocks corresponding to simple and well-

predicted content. (b) Examples of running SRCNN with FAST

before and after deblocking, compared to SRCNN results on the

second frame. (Best viewed in color)

5. Experimental Results

5.1. Evaluation Dataset and Setup

We evaluate the FAST framework on the 20 video se-

quences used in the development of the latest video coding

standard H.265/HEVC, as they cover a wide range of video

content [10]. We use the original uncompressed videos

as the high-resolution ground-truth. We then synthetically

downsample them to lower-resolution, and encode them

with the H.265/HEVC encoder [42]. The FAST framework

uses the decompressed low resolution frames and the de-

coded syntax elements as the input, which can be obtained

for free from the video decoder.

We evaluate the FAST framework on three SR algo-

rithms: KRR [8], ANR [9] and SRCNN [5]1. For each al-

gorithm, we conduct two experiments: (1) we run the SR

algorithm directly on all of the low-resolution frames; (2)

we use the SR algorithm to upsample the first frame, then

use FAST to transfer the result to all the other frames.

For quantitative evaluation, we compute the PSNR

between each output frame and the ground-truth high-

resolution frame. Since the ground-truth frames are not

compressed, the reported PSNR includes both the quanti-

zation noise from lossy compression and the quality of the

super-resolution algorithm. As a result, the reported gain

of SR algorithms against bicubic interpolation in our ex-

periments is around 1 dB lower than the gains reported in

the original papers. We measure the run time to quantify

the FAST acceleration using MATLAB on a 3.3GHz Xeon

CPU.

5.2. Evaluation Results

Table 1 and Table 2 shows the PSNR and acceleration

ratio for the various SR algorithms, when FAST transfers

all the way to the 4th and 16th frame, respectively. Figure 4

shows the visual quality of the FAST framework on SRCNN

for both the 2nd and the 16th frames. From these results we

can see that the FAST framework is robust as it maintains

the PSNR and achieves significant acceleration across all

evaluated video sequences and SR algorithms.

Figure 5 shows that as the number of transferred frames

increases (i.e., GOP size), the acceleration increases, but so

does the drop on in PSNR. This can be explained by look-

ing at the breakdown in PSNR and acceleration per frame as

shown in Table 3 and Table 4, respectively. In the first four

frames, FAST gives comparable PSNR as SRCNN. At the

16th frame, FAST gives slightly worse PSNR (< 0.2 dB)

than SRCNN, which is still significantly better than bicubic

1Only the MATLAB code for SRCNN is publicly available; thus, our

run times are higher than numbers reported in [5] which used C code.



Sequence name Size
KRR SRCNN ANR

Bicubic

PSNR
SR

PSNR

FAST

PSNR

Speed

up

SR

PSNR

FAST

PSNR

Speed

up

SR

PSNR

FAST

PSNR

Speed

up

BQMall 416×240 28.67 28.63 3.9× 28.92 28.88 4.1× 28.5 28.48 4.1× 27.65

BQSquare 208×112 24.1 24.16 3.9× 24.78 24.85 4.1× 23.67 23.75 4.1× 22.77

BQTerrace 960×528 29.01 29.22 3.9× 29.37 29.51 4.0× 28.73 28.97 3.9× 27.45

BasketballDrill 416×240 31.7 31.69 3.9× 31.6 31.6 3.6× 31.18 31.18 3.8× 30.19

BasketballDrillTe×t 416×240 31.7 31.69 3.9× 31.6 31.6 4.1× 31.18 31.18 3.8× 30.19

BasketballDrive 960×528 34.51 34.51 3.6× 34.65 34.65 3.6× 34.19 34.21 3.9× 33.49

BasketballPass 208×112 30.54 30.58 3.9× 30.63 30.65 3.7× 30.34 30.4 3.6× 29.7

BlowingBubbles 208×112 28.68 28.76 3.8× 28.68 28.74 3.7× 28.52 28.57 3.7× 27.91

Cactus 208×112 32.68 32.8 3.9× 32.72 32.83 3.5× 32.59 32.7 3.9× 31.78

ChinaSpeed 960×528 24.7 24.66 3.9× 24.9 24.83 4.0× 24.52 24.52 4.4× 23.97

FourPeople 512×384 34.43 34.43 4.1× 34.75 34.76 3.9× 34.36 34.36 3.9× 33

Johnny 640×352 37.08 37.09 4.0× 37.22 37.23 3.5× 36.81 36.84 4.1× 35.76

Kimono 960×528 37.5 37.44 3.7× 37.36 37.38 3.7× 37.44 37.4 3.9× 37.56

KristenAndSara 640×352 34.98 34.98 3.9× 35.84 35.85 4.3× 34.68 34.69 3.9× 33.22

ParkScene 960×528 33.35 33.36 3.9× 33.35 33.37 3.7× 33.33 33.36 4.0× 32.98

PartyScene 416×240 25.41 25.4 3.9× 25.58 25.58 4.3× 25.24 25.23 3.4× 24.55

PeopleOnStreet 1280×800 33.54 33.34 3.8× 33.35 33.19 4.0× 33.67 33.45 3.5× 32.89

RaceHorses 416×240 29.9 29.79 3.6× 29.95 29.82 3.9× 29.77 29.7 2.8× 29.02

SlideEditing 640×352 19.93 19.93 4.0× 20.73 20.73 3.5× 19.86 19.87 3.6× 19.3

Traffic 1280×800 34.73 34.71 3.9× 34.73 34.72 4.0× 34.75 34.74 3.9× 33.97

Average 30.86 30.86 3.9× 31.04 31.04 3.9× 30.67 30.68 3.8× 29.87
Table 1. With 3 transfers from the 1st frame to the 4th frame, FAST gets around 4× speed up uniformly across all sequences for all SR

algorithms, with no visual quality loss.

Sequence name Size
KRR SRCNN ANR

Bicubic

PSNR
SR

PSNR

FAST

PSNR

Speed

up

SR

PSNR

FAST

PSNR

Speed

up

SR

PSNR

FAST

PSNR

Speed

up

BQMall 416×240 28.63 28.4 14.1× 28.85 28.6 15.2× 28.47 28.28 13.2× 27.68

BQSquare 208×112 23.98 24.1 14.7× 24.65 24.61 13.7× 23.59 23.78 9.2× 22.7

BQTerrace 960×528 28.98 29.16 14.9× 29.34 29.36 15.9× 28.69 28.95 14.8× 27.43

BasketballDrill 416×240 31.53 31.28 13.3× 31.41 31.21 12.7× 31.03 30.87 11.2× 30.08

BasketballDrillText 416×240 31.53 31.28 13.3× 31.41 31.21 13.9× 31.03 30.87 11.5× 30.08

BasketballDrive 960×528 34.43 34.22 12.1× 34.56 34.3 15.3× 34.13 34.02 14.5× 33.47

BasketballPass 208×112 30.56 30.26 13.9× 30.62 30.25 13.3× 30.37 30.18 8.7× 29.81

BlowingBubbles 208×112 28.45 28.35 14× 28.47 28.34 12.3× 28.31 28.25 8× 27.75

Cactus 208×112 32.46 32.36 14.1× 32.52 32.39 13.9× 32.37 32.32 14.4× 31.6

ChinaSpeed 960×528 24.79 24.65 13.8× 24.97 24.81 13.7× 24.61 24.54 15× 24.05

FourPeople 512×384 34.33 34.23 15.1× 34.64 34.55 15.1× 34.26 34.17 15.2× 32.91

Johnny 640×352 36.92 36.76 15.1× 37.06 36.89 14.8× 36.62 36.51 16.1× 35.54

Kimono 960×528 37.08 36.59 13.5× 36.94 36.56 13.5× 37.02 36.57 14.2× 37.17

KristenAndSara 640×352 34.9 34.78 14× 35.74 35.6 17.6× 34.6 34.51 15.4× 33.15

ParkScene 960×528 33.08 32.83 13.3× 33.07 32.82 13.4× 33.06 32.84 14.8× 32.74

PartyScene 416×240 25.01 24.85 13.3× 25.17 24.95 14× 24.88 24.78 9.3× 24.28

PeopleOnStreet 1280×800 33.35 32.48 12.7× 33.15 32.38 15.3× 33.47 32.55 9.4× 32.74

RaceHorses 416×240 29.91 29.31 12× 29.95 29.31 10.7× 29.78 29.31 4.4× 29.1

SlideEditing 640×352 19.88 19.84 16× 20.7 20.61 13.3× 19.8 19.79 11.5× 19.24

Traffic 1280×800 34.52 34.25 14.1× 34.51 34.25 15.8× 34.51 34.27 12.8× 33.78

Average 30.72 30.5 13.9× 30.89 30.65 14.2× 30.53 30.37 12.2× 29.77
Table 2. With 15 transfers from the 1st frame to the 16th frame, FAST gets more than 10× speed up on average over all sequences for all

SR algorithms, with around 0.2dB PSNR loss. Nevertheless, the PSNR of FAST output is still significantly higher than the bicubic output.

Note that the complexity of FAST is comparable to bicubic interpolation on most of the transferred frames.
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Figure 4. Running different SR algorithms with FAST on different frames of different sequences. Top: Cactus. Mid: BasketballDrill.
Bottom: BQTerrace. Note how FAST maintains the appearance of SR output. (Best viewed in color)

even though the transferred frames in FAST have similar

complexity to bicubic. The average run time on the first 4

and 16 frames is also included. We can see that the cost

of the transfer is negligible compared with SRCNN. There-

fore, the average run time per frame is approximately the

run time of applying SR to the first frame divided by the

number of processed frames.

Note that in our evaluation we are reporting the PSNR

drop for the worst case, where all frames are chained to-

gether in a I-P-P-P GOP structure. For other more flexible

GOP structures, such as those that allow bi-prediction, we

would expect the PSNR to reduce more slowly than I-P-P-P.
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Figure 5. The higher the acceleration ratio, the more PSNR loss,

albeit the PSNR loss is only around 0.2dB over all sequences even

near 15× acceleration.



Frame ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Mean 4 Mean 16
SRCNN 34.97 34.75 34.71 34.57 34.86 34.65 34.6 34.46 34.78 34.62 34.56 34.43 34.74 34.57 34.51 34.4 34.75 34.64

FAST 34.97 34.76 34.73 34.59 34.79 34.61 34.53 34.42 34.63 34.5 34.43 34.32 34.54 34.39 34.33 34.24 34.76 34.55

Bicubic 33.1 33.01 32.98 32.91 33.01 32.91 32.87 32.8 32.97 32.89 32.84 32.79 32.95 32.87 32.82 32.78 33 32.91

Table 3. PSNR (in dB) and visual quality loss of the FAST framework using SRCNN on the test sequence ”FourPeople”.

Frame ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Mean 4 Mean 16
SRCNN 97.19 92.14 95.54 94.19 86.53 100.21 103.49 94.93 93.71 95.44 98.27 97.26 109.08 68.78 76.55 106.63 94.77 94.37

FAST 97.19 0.12 0.17 0.14 0.32 0.12 0.16 0.14 0.36 0.13 0.17 0.15 0.41 0.13 0.19 0.15 24.41 6.25

Speed up 1× 776× 556× 660× 268× 819× 663× 691× 259× 754× 595× 653× 266× 518× 399× 731× 3.9× 15.1×
Table 4. Run time (in msec) and acceleration of the FAST framework using SRCNN on the test sequence ”FourPeople”.
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Figure 6. When QP = 22, the average PSNR across all the test

sequences drops as FAST transfers more frames if no thresholding

on accumulated error (i.e., adaptive transfer reset) is performed.

The previous results were evaluated on video sequences

with a quantization parameter (QP ) setting of 27; this is a

typical quantization setting used in video compression. To

evaluate the sensitivity to the accumulated transfer error, we

reduce the QP to 22, which reduces the compression ratio

resulting in a higher quality video. Without adaptive trans-

fer reset, we notice a large drop in PSNR as shown in Fig-

ure 6, where the 16th frame has around 0.7dB lower PSNR

than SRCNN, which is much worse than the 0.2dB for QP
of 27. As discussed earlier, this error accumulation is ex-

pected when the quantization used during compression is

low since there are more high frequency components in the

residual that are not preserved by the bicubic interpolation.

Applying the adaptive transfer reset reduces this PSNR

drop at the cost of acceleration as shown in Figure 7.

In these plots, we sweep the threshold discussed in Sec-

tion 4.2.2. Decreasing the threshold reduces the number of

blocks that can be transferred, thus improving the super-

resolution visual quality while lowering the acceleration ra-

tio. When more than 80% of the blocks are transferred for

5× acceleration, the PSNR drop is only around 0.2dB. Note

that when the threshold is set to zero, there are still more

than 50% blocks transferred, resulting in a 2× acceleration;

this is due to the fact that on average, in a typical encoded

video, over 50% of the pixels have zero residual; in all these

cases, the blocks are transferred regardless of the threshold.

Accordingly, the minimum transfer ratio plotted in Figure 7

is 0.55; the PSNR would remain the same below this ratio.

In summary, FAST accelerates SR algorithms by an or-

der of magnitude in typical video quality settings. Even
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Figure 7. Trade-off between visual quality and speed for FAST

when QP = 22 for a GOP size of 16.

in the challenging setting with low quantization and the

chained GOP structure (IPPP), FAST still achieves a sig-

nificant (5×) acceleration with an acceptable PSNR loss

around 0.2dB. This validates the effectiveness of FAST on

accelerating a SR algorithms across all settings in practice.

6. Conclusions
This paper offers new insight on how to view the input

to computer vision and image processing algorithms. Most

visual content is stored in a compressed format; thus, rather

than viewing the input as only an array of pixels, we should

also take into account that it also contains useful informa-

tion about the structure of the visual content.

In this paper, we have shown how exploiting this infor-

mation in the FAST framework can accelerate various SR

algorithms by up to 15× with only 0.2dB loss. Thus, the

FAST framework is an important step towards enabling high

visual quality SR algorithm in real-time for ultra-high reso-

lution displays with low computational complexity.

FAST also demonstrates how using non-overlapping

block division with deblocking filter reduces computation

and avoids artifacts near the block boundary. This approach

can potentially be extended to other SR and image process-

ing algorithms.

As far as we know, FAST is the first technique to use

the embedded information in compressed video to acceler-

ate super-resolution on video. We believe that this approach

can also be extended to accelerate other computer vision

and image processing algorithms, which is becoming in-

creasingly important as the latest state-of-the-art algorithms

tend to use CNNs with high computational complexity.
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