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Video is the Biggest Big Data

Over 70% of today’s Internet traffic is video
Over 300 hours of video uploaded to YouTube every minute
Over 500 million hours of video surveillance collected every day
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Energy limited due Power limited due
to battery capacity to heat dissipation

Need energy-efficient pixel processing!
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Energy-Efficient Pixel Processing

( Next-Generation Video Coding (Compress Pixels)

Ultra-HD

Goal: Increase coding efficiency, speed and energy-efficiency

( Energy-Efficient Computer Vision & Deep Learning (Understand Pixels)\
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k Recognition Self-Driving Cars

Goal: Make computer vision as ubiquitous as video coding




Typical Constraints on Video Coding

* Area cost
— Memory Size 100-500kB

* Power budget
— < 1W for smartphones

MIT Object
Detection Chip

* Throughput [VLS1 2016]

— Real-time 30 fps

* Energy
— ~1nl/pixel

DPM

Video Compression  Object
Detection




Eyeriss: Energy-Efficient

Hardware for DCNNs

Yu-Hsin Chen, Tushar Krishna, Joel Emer, Vivienne Sze, ISSCC 2016 / ISCA 2016
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] Deep Convolutional Neural Networks

Modern deep CNN: can be over 100 CONV layers

f \

Low-level m High-level
Features Features
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Deep Convolutional Neural Networks

1 -3 layers

High-level
Features
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] Deep Convolutional Neural Networks

CONV FC
Layer Layers

Convolutions account for more
than 90% of overall computation,
dominating runtime and energy
consumption
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Il High-Dimensional CNN Convolution

Input Image (Feature Map)
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High-Dimensional CNN Convolution

Input Image (Feature Map) Output Image

Filter > a pixel
f s ;
T = ® ‘ ‘
<— R —> ] H — <€ E >
Element-wise Partial Sum (psum)
Multiplication Accumulation
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High-Dimensional CNN Convolution

Input Image (Feature Map) Output Image

Filter

<« —>

Sliding Window Processing
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High-Dimensional CNN Convolution

Input Fmap
i c”
Fliter 2% Output Fmap
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Many Input Channels (C)

it  AlexNet: 3 — 192 Channels (C) ST ——




High-Dimensional CNN Convolution

Input Fmap

Many Output Fmap
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High-Dimensional CNN Convolution

Many
Input Fmap (N) Many
Eilt o : Output Fmap (N)
| erS i — * P
A M“. .
‘(C.;"‘ K A‘('
! H
R : E
l ) v 1 = “. v 1 =
< R— < H > < E —
. : c’| S ,
L | 7'_
L —]
R = 1 T D &
<— R — N . v N
v J < E >
< H >

o
RRRRRRRRRRRRRRRRRR o000
1 - L M
Image batch size: 1 — 256 (N) rle R L
AT MIT institute of




Large Sizes with Varying Shapes

AlexNet! Convolutional Layer Configurations

Layer | Filter Size (R) | # Filters (M) | # Channels (C) | Stride

1 11x11 96 3 4

2 5x5 256 48 1

3 3x3 384 256 1

4 3x3 384 192 1

5 3x3 256 192 1

Layer 1 Layer 2 Layer 3

34k Params 307k Params 885k Params
105M MACs 224M MACs 150M MACGs

i 1. [Krizhevsky, NIPS 2012] seeenginl MRS e




Properties We Can Leverage

* Operations exhibit high parallelism
- high throughput possible
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Properties We Can Leverage

* Operations exhibit high parallelism

* Memory Access is the Bottleneck

- high throughput possible

Memory Read : MAC’ Memory Write
filter Weiqht§ A ALU
fmg  act ® updated
partial sum : Sartial sum >

* multiply-and-accumulate
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Properties We Can Leverage

* Operations exhibit high parallelism
- high throughput possible

* Memory Access is the Bottleneck

Memory Read MAC" Memory Write

filter weight , ALU
fmap act ® updated

partial sum g . >
” partial sum

DRAM

200x 1x

Worst Case: all memory R/W are DRAM accesses

« Example: AlexNet [NIPS 2012] has 724M MACs
- 2896M DRAM accesses required
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Properties We Can Leverage

e Operations exhibit high parallelism
- high throughput possible

* Input data reuse opportunities (up to 500x)
- exploit low-cost memory

Fmap

Filters
Filter Fmap AN . Fmap Filter
1 A=
— ]+
2 -
Convolutional Feature Map Filter
Reuse Reuse Reuse

(activations, weights) (activations) (weights)



Highly-Parallel Compute Paradigms

Temporal Architecture Spatial Architecture
(SIMD/SIMT) (Dataflow Processing)

Memory Hierarchy Memory Hierarchy
Register File
ALU ALU ALU ALU
ALU ALU ALU ALU

A 4 A 4 A 4 A 4
ALU ALU ALU ALU

A 4 A 4 A 4 A 4

ALU ALU ALU ALU
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Advantages of Spatial Architecture

Spatial Architecture
(Dataflow Processing)

Efficient Data Reuse Memory Hierarchy

Distributed local storage (RF)

Inter-PE Communication
Sharing among regions of PEs

Processing
Element (PE)

0.5-1.0kB Reg File

Control
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How to Map the Dataflow?

Spatial Architecture
(Dataflow Processing)

CNN Convolution
Memory Hierarchy

activations

weights »
partial
sums

Goal: Increase reuse of input data
(weights and activations) and local
partial sums accumulation
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Energy-Efficient Dataflow

Yu-Hsin Chen, Joel Emer, Vivienne Sze, ISCA 2016

Maximize data reuse and accumulation at RF
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Data Movement is Expensive

Off-Chip
DRAM

Global

Buffer

Accelerator

Processing Engine

PE 4 PE
¢
PE ALU

PE

bem

100 - 500 kB [Eg——
PE F------P
0.5-1.0 kB [L—

NoC: 200 - 1000 PEs

ALU

ALU

ALU

ALU

ALU

Data Movement Energy Cost

2%
1%

/| 200

6x

1% (Reference)

Maximize data reuse at lower levels of hierarchy




Weight Stationary (WS)

Global Buffer

* Minimize weight read energy consumption
— maximize convolutional and filter reuse of weights

« Examples:

[Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014]
[Park, ISSCC 2015] [Origami, GLSVLSI 2015]
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Output Stationary (OS)

Global Buffer

Psum

* Minimize partial sum R/W energy consumption
— maximize local accumulation

« Examples:

[Gupta, ICML 2015] [ShiDianNao, /ISCA 2015]
[Peemen, ICCD 2013]
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No Local Reuse (NLR)

Global Buffer

« Use a large global buffer as shared storage
— Reduce DRAM access energy consumption

« Examples:

[DianNao, ASPLOS 2014] [DaDianNao, MICRO 2014]
[Zhang, FPGA 2015]
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Row Stationary: Energy-efficient Dataflow

Input Fmap
Filter Output Fmap
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1D Row Convolution in PE

Input Fmap
Filter Partial Sums

* =

Reg File

M
H

| 3|
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1D Row Convolution in PE

Input Fmap

Filter Partial Sums

ablc +

Reg File

H

| 3|
HIT B sosconcrianonarony
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1D Row Convolution in PE

Input Fmap

Filter Partial Sums

ablc +

Reg File

H
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1D Row Convolution in PE

Input Fmap

Filter Partial Sums

ablc +

Reg File

H
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1D Row Convolution in PE

« Maximize row convolutional reuse in RF
- Keep a filter row and fmap sliding window in RF

 Maximize row psum accumulation in RF

Reg File

H

microsystems technology laboratories
institute of




2D Convolution in PE Array

PE 1

*
|

u -
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2D Convolution in PE Array

1

PE 1
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2D Convolution in PE Array
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2D Convolution in PE Array
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Convolutional Reuse Maximized

PE 1 PE 4 PE 7
PE 2 PE 5 PE 8
PE 3 PE 6 PE 9

Filter rows are reused across PEs horizontally
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Convolutional Reuse Maximized

PE 1 PE 4 PE 7
PE 2 PE 5 PE 8
PE 3 PE 6 PE 9

Feature map rows are reused across PEs diagonally
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Maximize 2D Accumulation in PE Array

PE 1 PE 4 PE 7

PE 3 PE 6 PE 9

1 1
e | eee | e
I 1

Partial sums accumulate across PEs vertically
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CNN Convolution — The Full Picture

Filter 1 Fmap:1 & 2 Psum 1 & 2
Multiple fmaps: [N+ (D - I
Filter1 & 2 Fmap 1 Psum1 & 2
Multiple fitters: ([ EERTERINRTINI (] = (I
Filter 1 Fmap 1 Psum

Multiple channels: [T + IR - ()

Map rows from multiple fmaps, filters and channels to same PE
to exploit other forms of reuse and local accumulation




Evaluate Reuse in Different Dataflows

 Weight Stationary

— Minimize movement of filter weights

* Output Stationary

— Minimize movement of partial sums

* No Local Reuse

— Don’t use any local PE storage. Maximize global buffer size.

* Row Stationary
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Evaluate Reuse in Different Dataflows

 Weight Stationary

— Minimize movement of filter weights

* Output Stationary

— Minimize movement of partial sums

* No Local Reuse

— Don’t use any local PE storage. Maximize global buffer size.

* Row Stationary

Evaluation Setup Normalized Energy Cost’
e Same Total Area LALUT P 1x (Reference)
e AlexNet EE—m 1
PE_|——>|E| 2%
" 256PEs O——@m 6x
e Batchsize=16 "DRAM | 5T 2 200%




Dataflow Comparison: CONV Layers

2

1'5 l
Normalized 1 I
Energy/MAC

0 -

WS 0S, 0S; O0S. NLR RS
CNN Dataflows

RS uses 1.4x — 2.5% lower energy than other dataflows ‘

L}
i A sascnssevrny MTLees
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Dataflow Comparison: CONV Layers

Normalized
Energy/MAC I

S, 0S; 0S,
CNN Dataflows

® psums

= weights
= act

RS optimizes for the best overall energy efficiency
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Dataflow Comparison: FC Layers

Normalized
Energy/MAC 1 I

S, 0S; 0S,
CNN Dataflows

® psums

= weights
= act

RS uses at least 1.3% lower energy than other dataflows

L
RESEARCH LABORATORY |V| o000
I I I I I r]—e OF ELECTRONICS ATMIT  pnjicro: Is %ms technology laboratories
armyr  massachusetts institute of




Row Stationary: Layer Breakdown

2.0e10 .

1.5e10 m ALU
Normalized RF
Energy  10e10 [ NoC
(1 MAC =1) W buffer
0.5e10 = DRAM

CONV Layers FC Layers

L
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Row Stationary: Layer Breakdown

2.0e10 .

1.5e10 ® ALU
Normalized RF
Energy  10e10 [ NoC
(1MAC =1) ¥ buffer
0.5e10 “ DRAM

CONV Layers FC Layers
‘ RF dominates ‘

L
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Row Stationary: Layer Breakdown

Normalized
Energy

(1 MAC = 1)

2.0e10 .

1.5e10 m ALU
. RF
1.0e10 [N ] NoC
W buffer
0.5e10 S = DRAM
B B —
HHEH NN .
L1 L2 L3 L4 L5
CONV Layers FC Layers
‘ RF dominates ‘ ‘ DRAM dominates‘
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Row Stationary: Layer Breakdown

Normalized
Energy

(1 MAC = 1)

2.0e10 . Total Energy
80% @ m 20%
1.5e10 m ALU
. RF
1.0e10 [N ] NoC
W buffer
0.5e10 = DRAM
B B —
HHEH NN =
L1 L2 L3 L4 L5 Le L7 L8
CONV Layers FC Layers
‘ RF dominates ‘ ‘ DRAM dominates‘
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Energy-Efficient Accelerator

Yu-Hsin Chen, Tushar Krishna, Joel Emer, Vivienne Sze, ISSCC 2016

Exploit data statistics
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Eyeriss Deep CNN Accelerator

Link Clock' Core Clock DCNN Accelerator
_“I
| 14%x12 PE Array
. Filter Filt
' Inputimage [N Img
I Jecomop A
Psum

Sl Psum

Output Image ERY:

64 bits

n:=- Y reseancrasonatony MTLeee
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Data Compression Saves DRAM BW

DRAM
Access
(MB)

Apply Non-Linearity (ReLU) on Filtered Image Data

9

-1

-3

-5

RelU

6

-1

V

9

0

0

1
AlexNet Conv Layer

2

3

4

5

5

0

Uncompressed
Filters + Images

Compressed

Filters + Images
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Zero Data Processing Gating

Skip PE local memory access

Skip MAC computation
Save PE processing power by 45%

No R/W No Switching
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Chip Spec & Measurement Results!

Technology

TSMC 65nm LP 1PSM

On-Chip Buffer

108 KB

# of PEs

168

Scratch Pad / PE

0.5 KB

Core Frequency

100 — 250 MHz

Peak Performance

33.6 — 84.0 GOPS

Word Bit-width

16-bit Fixed-Point

Natively Supported
CNN Shapes

Filter Width: 1 — 32

Filter Height: 1 - 12
Num. Filters: 1 — 1024
Num. Channels: 1 — 1024
Horz. Stride: 1-12

Vert. Stride: 1,2, 4

AlexNet: For 2.66 GMACs [8 billion 16-bit inputs (16GB) and 2.7 billion
outputs (5.4GB)], only requires 208.5MB (buffer) and 15.4MB (DRAM)

e P researchLa
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Comparison with GPU

This Work NVIDIA TK1 (Jetson Kit)
Technology 65nm 28nm
Clock Rate 200MHz 852MHz
# Multipliers 168 192
On-Chip Storage Buffer: 108KB Shared .Mem: 64KB
Spad: 75.3KB Reg File: 256KB
Word Bit-Width 16b Fixed 32b Float
Throughput!? 34.7 fps 68 fps
Measured Power 278 mW Idle/Active?: 3.7W/10.2W
DRAM Bandwidth 127 MB/s 1120 MB/s 3

1. AlexNet Convolutional Layers Only

2. Board Power

3. Modeled from [Tan, SC11]
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Demo of Image Classification on Eyeriss

U i« T @ 3% TewBinm Q =

[ISSCC 2016] Paper 14.5: Eyeriss Caffe Demo

Yu-Msin Chen’', Tushar Krishna', Joel Emer’ 2
L3

This demo shows Caffe running with th

Jetson TK1 VC707 + Eyeriss

1. System Setup 2. Eyeriss Die Photo

Classification

=
X
4
W
Vel
=
[
=
I 4
»
»

https://vimeo.com/154012013
Integrated with BVLC Caffe DL Framework




Summary of Eyeriss Deep CNN

* Eyeriss: a reconfigurable accelerator for
state-of-the-art deep CNNs at below 300mW

* Energy-efficient dataflow to reduce data movement
* Exploit data statistics for high energy efficiency

* Integrated with the Caffe DL framework and
demonstrated an image classification system

[=];

Learn more about Eyeriss at

http://eyeriss.mit.edu
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Features: Energy vs. Accuracy

Exponential
1000
2
Energy/ 100 + AlexNet
Pixel (nJ)
. 10 :
Measured in 65nm* Video
1. [Suleiman, VLSI 2016] Compression
2. [Chen, ISSCC 2016] 1 - HOG!
Linear
* Only feature extraction. Does 0.1 : : : |
not include data, augmentation,
ensemble and classification 0 20 40 60 80

energy, etc.

Accuracy (Average Precision)

Measured in on VOC 2007 Dataset
1. DPM v5 [Girshick, 2012]
2. Fast R-CNN [Girshick, CVPR 2015]
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Designing Energy-Efficient CNNs

using Energy-Aware Pruning

Tien-Ju Yang, Yu-Hsin Chen, Vivienne Sze, arXiv 2016




Key Metrics for Embedded DNN

* Accuracy 2 Measured on Dataset

* Speed 2 Number of MACs

* Storage Footprint 2 Number of Weights
* Energy 2 ?
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Energy-Evaluation Methodology

4

CNN Shape Configuration
(# of channels, # of filters, etc.)

Hardware Energy Costs of each
MAC and Memory Access

# acc. at mem. level 1

Memory # acc. at mem. level 2

Accesses

CNN Weights and Input Data

Optimization # acc. at mém. level n Ejata
# of MACs # of MACs Ecomp S
Calculation
v
Energy T
_I >
[0.3,0,-04,0.7,0,0,0.1, ...] 1213

CNN Energy Consumption

i Energy estimation tool to be released on http://eyeriss.mit.edu = MILS2S, ...
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Key Observations

* Number of weights alone is not a good metric for energy

* All data types should be considered

Computation
10% Input Feature Map

25%

Weights
Energy Consumption 22%

of GooglLeNet

i [Yang et al., arXiv 2016] o MILe®S .




Energy Consumption of Existing DNNs
%
zi% ResNet-50@

VGG-16
89%

87%
85%
83%

® GoogleNet

Top-5 Accuracy

81% AlexNet@ @SqueezeNet
79%

77%
5E+08 5E+09 5E+10
Normalized Energy Consumption

® QOriginal DNN

Deeper CNNs with fewer weights do not necessarily consume
less energy than shallower CNNs with more weights

i [Yang et al., arXiv 2016] o MIL®eS .

...........




Magnitude-based Weight Pruning

93%
91% ResNet-50 @

VGG-16
89%

87%
85%

® GoogleNet

Top-5 Accuracy

83% SqueezeNet

A
81% A AlexNet@ @SqueezeNet
799% AlexNet

77%
5E+08 5E+09 5E+10
Normalized Energy Consumption

® Original DNN A Magnitude-based Pruning [Han et al., NIPS 2015]

Reduce number of weights by removing small magnitude weights
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EM Energy-Aware Pruning

93%

91% ResNet-50 @ et
> _
(8]

o 89% ® GoogleNet ®
§ 87% GoogleNet m
<
"3_ 85%
2 83y
°  1.8x SqueezeNet
81% A
0 i AlexNet@ @SqueezeNet
799% AlexNet®  alexNet SqueezeNet
77%
5E+08 5E+09 5E+10

Normalized Energy Consumption

® Original DNN 4 Magnitude-based Pruning M Energy-aware Pruning (This Work)

Remove weights from layers in order of highest to lowest energy
3.7x reduction in AlexNet / 1.6x reduction in GooglLeNet

i [Yang et al., arXiv 2016] o MIL®eS .

...........




Summary Tutorial on DNN Architectures:

https://eyeriss.mit.edu

* Energy-Efficient Approaches
— Minimize data movement
— Balance flexibility and energy-efficiency
— Exploit sparsity with joint algorithm and hardware design

* Joint algorithm and hardware design can deliver
additional energy savings (directly target energy)

* Linear increase in accuracy requires exponential
increase in energy
Acknowledgements: This work is funded by the DARPA YFA grant,
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