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Video is the Biggest Big Data

Over 70% of today’s Internet traffic is video
Over 300 hours of video uploaded to YouTube every minute
Over 500 million hours of video surveillance collected every day
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Energy limited due Power limited due
to battery capacity to heat dissipation

Need energy-efficient pixel processing!
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Energy-Efficient Multimedia Systems Group

( Next-Generation Video Coding (Compress Pixels)

Ultra-HD

Goal: Increase coding efficiency, speed and energy-efficiency

( Energy-Efficient Computer Vision & Deep Learning (Understand Pixels)\
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k Recognition Self-Driving Cars

Goal: Make computer vision as ubiquitous as video coding




Features for Object Detection/Classification

Energy/
e Hand-crafted features pixel A
— Histogram of Oriented Gradients (HOG) ©DCNN
Reduce power
— Deformable Parts Model (DPM)
. . . . °DPM
* Trained features (using machine learning)
°HOG
— Deep Convolutional Neural Nets (DCNN) —>
Accuracy
HOG %8 &% DPM DCNN
Rigid Template Flexible Template High level
based on edges based on edges Abstraction
[Dalal, CVPR 2005] [Felzenszwalb, PAMI 2010] [Krizhevsky, NIPS 2012]
Cited by 14500 Cited by 4063 Cited by 4843
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Energy-Efficient Approaches

* Joint algorithm and hardware design
— Use algorithm to make data sparse; hardware to exploit it

e Minimize data movement

— Maximize data reuse and leverage compression

e Balance flexibility and energy-efficiency

— Configurable hardware for different applications
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HOG+SVM Accelerator

Amr Suleiman, Vivienne Sze, Journal of Signal Processing Systems 2015 [paper]
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http://www.rle.mit.edu/eems/wp-content/uploads/2015/10/suleiman_jsps_2015.pdf
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lll Object Detection Pipeline

Threshold (Th)
l Detection?

Feature eratu res| Classification | (yes/no)

ExtractionJ (x) (Wx)>Th If yes, object
class & position

Handcrafted Features Learned
(HOG) Classifier Weights (w)
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ll Multi-Scale Object Detection
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lll Detecting Objects with Different Sizes

* Process different resolutions of the same frame.

Image Pyramid

12 scales gives 2.4x increase in accuracy®
at the cost of 3.2x increase in processing

* Measured on INRIA person dataset
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Parallel Detectors and Voltage Scaling

Throughput = 1080HD @ 60fps

2.0 & Balance workload across detectors
1-detector
@ 1.1V 0
—~1.5 1 |
Q
3¢ N
= \ mm Detector 3
=10
= 5-detector
u>'o @ 0.6V
5 0.5 .
::: 3-detector .
@ 0.72V
0.0 0 0.5 1
13 14 15 16 17 138 Normalized number of
Area (mm?) pixels per scale

Use three parallel detectors at 0.72V for a 3.4x energy reduction

i Minimum voltage of SRAM is 0.72V LS 1 .




Share Reads Across Parallel Detectors

/SNM weights

Scale 1 Detector 1 | SRAM
HOG Feature SVM
Extraction Classification
Scale 2 & 3 | Detector2 .
 HOG Feature SVM Objects
Extraction Classification Locations
Scale 4 to 12| Detector3 |
HOG Feature SVM
Extraction  Classification

Object Detector Core

Synchronize detectors to share SVM weight memory
(20% reduction in power)
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Image Pre-Processing
T

e

0 50 100 150 200 250

. 0 50 100 150 200 250
Intensity

Intensity

* Gradient pre-processing reduces cost of image scale generation
— Reduce memory size by 2.7x
— Reduce power consumption by 43%

— Reduce detection accuracy by 2%
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Real-Time HOG Detector Summary

* An energy-efficient object detector is implemented delivering
real-time processing of 1920x1080 at 60 fps

* Multi-scale support for 2.4x higher detection accuracy

* Parallel detectors, voltage scaling and image pre-processing
for 4.5x energy reduction

Area 2.8 mm?

Max Frequency 270 MHz

(2]
]
-
o
1
-
v
(a]

Scales/frame 12
Gate count 490 kgates
On-chip SRAM 0.538 Mbit
Post-layout simulations 45nm SOI process

Real-time multi-scale object detection at 45mW (0.36 nJ/pixel) ‘

i [A. Suleiman et al., SiPS 2014, JSPS 2015] QIS eraoieolt MITL @8 e oo
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Comparison with Video Coding

Energy
(nl/pixel)

2

1.5

0.5 | .
. I B
H.264/AVC H.264/AVC H.265/HEVC H.265/HEVC
HOG
Decoder Encoder Decoder Encoder (45nm SOI)
(45nm) (45nm) (40nm) (28nm)

[ISSCC 2012]  [ISSCC 2012]  [ISSCC 2013] [VLSI 2013]
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Deformable Parts Model

Hardware Accelerator

Amr Suleiman, Zhendong Zhang, Vivienne Sze, VLSI 2016 [paper]
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http://www.rle.mit.edu/eems/wp-content/uploads/2016/06/dpm_vlsi_2016.pdf

Deformable Parts Models (DPM)

» Define HOG templates for an object (root) and its parts (at 2x
root resolution) with relative locations (anchors)

* Allow anchors to move with deformation penalty

Impact of parts and deformation
A

\

DPMScore = RootScore + EmaX(PartScore (dx,dy)— DeformCost,(dx,dy))

dx,dy

~2x higher accuracy than rigid template (HOG) | BEEEY BESS
High classification cost! Parts  Deformation

I wrmcimowror MITL 0@
I'lii [Felzenszwalb et al., PAMI 2010] T TR




Object Detection Pipeline
Threshold (Th)

l Detection?

(yes/no)
If yes, object
class & position

Feature eratu res
ExtractionJ (x)

Classification

Learned
Classifier Weights (w)
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Flexible vs. Rigid Template Complexity

* DPM classification with 8 parts requires >10x more
operations than root only classification

— Due to parts template, parts resolution, deformation
computation

* Approaches to reducing complexity

— Root Pruning: Reduce number of part classifications based
on root

— Basis Projection: Reduce amount of computation per
classification

-
sssssssssssssss M 000
I I I I I rl-e TTTTTTTTTTTTTTTTTT micro-sly-slt:ms technology laboratories
AT MIT

institute of




Low Power Parts Classification

‘ Prune >80% roots to reduce parts classification

Accuracy vs. Power with Pruning

90% 80%

29 97%

28 99%

Accuracy
(AP)
N
N

N
o

25 99.9%

N
D

0.2 04 0.6 0.8 1
Normalized Detection Power
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Low Power Parts Classification

Features

Store features for reuse by parts to avoid re-computation

Use Vector Quantization to reduce feature storage cost
— 16x reduction in memory size [520kB vs. 32kB]
— 7.6x reduction in area [520kB vs. VQ + 32kB + De-VQ]

Proposed architecture:

Dense roots and . .
Dense root scoring and pruning

parts scoring

Root

—> %)
Classification| | € g
Parts "g ki Root _)Tun'cg Parts || 5,
. e . esr > .o .
Classification| | Classification A>B Classification E’
AThreshold L8 No
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Low Power Roots and Parts Classification

Reduce the number of multiplications by projecting onto a
basis that increases sparsity (>1.8x power reduction)

Basis Projection Equation

(HW)=(H,Y S0, )= Y(H.S,)a, =Y Pa,
/ \< a A

Features Weights Basis Projected Projected
Features Weights
Histogram of Weights
150¢
Jf_ [
100t 400/ 56% zeros
Mems
501 200/
0 ol 41—1_‘_1_‘_
-16 0 15 16 0 15
Weights (W) Projected Weights (o)
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DPM Test Chip

Technology 65nm LP CMOS
Core size 3.5mm x 3.5mm
Logic gates 3283 kgates
SRAM 280 KB
Resolution 1920x1080
Supply 0.77-1.11V
Frequency 62.5—-125 MHz
Frame rate 30 - 60 fps
Power 58.6 -216.5 mW
Energy 0.94 — 1.74 nJ/pixel

Overall Tradeoff
5x power reduction,
3.6x memory reduction,
4.8% accuracy reduction

i [A. Suleiman et al., Sym. on VLSI 2016] sy MTLeee
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Comparison with Video Coding

Energy
(nl/pixel)
2

1.5

0.5 -
O _
H.264/AVC H.264/AVC H.265/HEVC H.265/HEVC
HOG DPM
Decoder Encoder Decoder Encoder [45nm SOI] (65nm]
(45nm) (45nm) (40nm) (28nm)

[ISSCC 2012] [ISSCC 2012] [ISSCC 2013] [VLSI 2013]
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Eyeriss: Energy-Efficient

Hardware for DCNNs

Yu-Hsin Chen, Tushar Krishna, Joel Emer, Vivienne Sze, ISSCC 2016 [paper] / ISCA 2016 [paper]
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http://www.rle.mit.edu/eems/wp-content/uploads/2016/02/eyeriss_isscc_2016.pdf
http://www.rle.mit.edu/eems/wp-content/uploads/2016/04/eyeriss_isca_2016.pdf

Deep Convolutional Neural Networks

Modern deep CNN: up to 1000 CONYV layers

f \

Low-level m High-level
Features Features
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Deep Convolutional Neural Networks

1 -3 layers

High-level
Features
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Deep Convolutional Neural Networks

CONV FC
Layer Layers

Convolutions account for more
than 90% of overall computation,
dominating runtime and energy
consumption
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High-Dimensional CNN Convolution

Input Image (Feature Map)

A I

Filter =—
—— I DY |
T HlS=r
R ‘ AN
) RN
vl VAN
<~ R — < H >
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High-Dimensional CNN Convolution

Input Image (Feature Map)
Filter —

.

«— R —

<« —>

Element-wise
Multiplication
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High-Dimensional CNN Convolution

Input Image (Feature Map) Output Image

Filter > a pixel
f s ;
T = ® ‘ ‘
<— R —> ] H — <€ E >
Element-wise Partial Sum (psum)
Multiplication Accumulation

-
RRRRRRRRRRRRRRRRRR M o000
I I I I I r]—e TTTTTTTTTTTTTTTTTT micr&Jy-s%ms technology laboratories
AT MIT

ttttttttttt




High-Dimensional CNN Convolution

Input Image (Feature Map) Output Image

Filter

<« —>

Sliding Window Processing
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High-Dimensional CNN Convolution

Input Image
i c”
Filter 2% Output Image
?'.I R
T"C’. : /,/7
R /—: ® H =] : @ E
} ' ) - !
< R— < H > < E —

Many Input Channels (C)

it  AlexNet: 3 — 192 Channels (C) ST ——




High-Dimensional CNN Convolution

Input Image

Many Output Image
Filters (M) &7 .’"%>pl—g
c R T ~ = :
K — * — ’
f H = D M
R //1 ] E [
i |
< R— < H > < E —
X
Many
Output Channels (M
S p (M)
i :
VY &
LM
<~ R —
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High-Dimensional CNN Convolution

Many
Input Images (N) Many
. . . Output Images (N
Filters L . P ges (N)
A M?’. .
‘(C.;"‘ K A‘('
! H
R : E
l ) v 1 "‘. v 1 =
<~ R— < H > < E —
A, ; c’™| s .
L | 7'_
> —
T T ® H /,/ @ E :
<— R — N . v N
v J < E >
< H >
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Large Sizes with Varying Shapes

AlexNet! Convolutional Layer Configurations

Layer | Filter Size (R) | # Filters (M) | # Channels (C) | Stride

1 11x11 96 3 4

2 5x5 256 48 1

3 3x3 384 256 1

4 3x3 384 192 1

5 3x3 256 192 1

Layer 1 Layer 2 Layer 3

34k Params 307k Params 885k Params
105M MACs 224M MACs 150M MACGs

i 1. [Krizhevsky, NIPS 2012] seeenginl MRS e




Properties We Can Leverage

* Operations exhibit high parallelism
- high throughput possible
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Properties We Can Leverage

* Operations exhibit high parallelism
- high throughput possible

* Memory Access is the Bottleneck

Memory Read : MAC’ . Memory Write
filter Weiqht§ A ALU
image pixel: ®
partial sum : ( : ;gi?e;[le:um >

* multiply-and-accumulate
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Properties We Can Leverage

* Operations exhibit high parallelism
- high throughput possible

* Memory Access is the Bottleneck

Memory Read MAC’ Memory Write
filter Wei.qht A ALU
DRAM Ll updated__
200x 1x

Worst Case: all memory R/W are DRAM accesses

« Example: AlexNet [NIPS 2012] has 724M MACs
- 2896M DRAM accesses required
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Properties We Can Leverage

e Operations exhibit high parallelism
- high throughput possible

* Input data reuse opportunities (up to 500x)
- exploit low-cost memory

Images

Filters
: Image | Image :
Filter e Filter
= I e
2
Convolutional Image Filter
Reuse Reuse Reuse

(pixels, weights) (pixels) (weights)



Highly-Parallel Compute Paradigms

Temporal Architecture Spatial Architecture
(SIMD/SIMT) (Dataflow Processing)

Memory Hierarchy Memory Hierarchy
Register File
ALU ALU ALU ALU
ALU ALU ALU ALU

A 4 A 4 A 4 A 4
ALU ALU ALU ALU

A 4 A 4 A 4 A 4

ALU ALU ALU ALU
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Advantages of Spatial Architecture

Spatial Architecture
(Dataflow Processing)

Efficient Data Reuse Memory Hierarchy

Distributed local storage (RF)

Inter-PE Communication
Sharing among regions of PEs

Processing
Element (PE)

0.5-1.0kB Reg File

Control
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How to Map the Dataflow?

Spatial Architecture
(Dataflow Processing)

CNN Convolution
Memory Hierarchy

pixels
weights »
partial
sums

Goal: Increase reuse of input data
(weights and pixels) and local
partial sums accumulation
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Energy-Efficient Dataflow

Yu-Hsin Chen, Joel Emer, Vivienne Sze, ISCA 2016 [paper]

Maximize data reuse and accumulation at RF
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http://www.rle.mit.edu/eems/wp-content/uploads/2016/04/eyeriss_isca_2016.pdf

Data Movement is Expensive

Off-Chip
DRAM

Global

Buffer

Accelerator

Processing Engine

PE 4 PE
¢
PE ALU

PE

bem

ALU

ALU

ALU

ALU

ALU

Data Movement Energy Cost

2%
1%

/| 200

6x

1% (Reference)

Maximize data reuse at lower levels of hierarchy




Weight Stationary (WS)

Global Buffer

* Minimize weight read energy consumption
— maximize convolutional and filter reuse of weights

« Examples:

[Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014]
[Park, ISSCC 2015] [Origami, GLSVLSI 2015]
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Output Stationary (OS)

Global Buffer

Psum

* Minimize partial sum R/W energy consumption
— maximize local accumulation

« Examples:

[Gupta, ICML 2015] [ShiDianNao, /ISCA 2015]
[Peemen, ICCD 2013]
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No Local Reuse (NLR)

Global Buffer

« Use a large global buffer as shared storage
— Reduce DRAM access energy consumption

« Examples:

[DianNao, ASPLOS 2014] [DaDianNao, MICRO 2014]
[Zhang, FPGA 2015]
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Row Stationary: Energy-efficient Dataflow

Input Image
Filter Output Image

-
RRRRRRRRRRRRRRRRRR M o000
I I I I I rLe TTTTTTTTTTTTTTTTTT micrn]y-s%ms technology laboratories
AT MIT institute of




1D Row Convolution in PE

Input Image
Filter Partial Sums

* =

Reg File

M
H

| 3|
HIT AP eseecrisosrory  MTL 00 @
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1D Row Convolution in PE

Input Image

Filter Partial Sums

ablc +

Reg File

H

| 3|
HIT B sosconcrianonarony
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1D Row Convolution in PE

Input Image

Filter Partial Sums

ablc +

Reg File

H
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1D Row Convolution in PE

Input Image

Filter Partial Sums

ablc +

Reg File

H
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1D Row Convolution in PE

« Maximize row convolutional reuse in RF
— Keep a filter row and image sliding window in RF

 Maximize row psum accumulation in RF

Reg File

H

microsystems technology laboratories
institute of




2D Convolution in PE Array

PE 1

*
|

u -
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2D Convolution in PE Array

1

PE 1
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2D Convolution in PE Array
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2D Convolution in PE Array
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Convolutional Reuse Maximized

PE 1 PE 4 PE 7
PE 2 PE 5 PE 8
PE 3 PE 6 PE 9

Filter rows are reused across PEs horizontally

-
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Convolutional Reuse Maximized

PE 1 PE 4 PE 7
PE 2 PE 5 PE 8
PE 3 PE 6 PE 9

Image rows are reused across PEs diagonally
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I Maximize 2D Accumulation in PE Array

PE 1 PE 4 PE 7

PE 3 PE 6 PE 9

1 1
e | eee | e
I 1

Partial sums accumulate across PEs vertically
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CNN Convolution — The Full Picture

Filter 1 Image 1 & 2 Psum 1 & 2
Multiple images: [+ I = I
Filter1 & 2 Image 1 Psum1 &2
Multiple filters: (TN (] = (IR
Filter 1 Image 1 Psum

Multiple channes: [T + IS - [

Map rows from multiple images, filters and channels to same PE
to exploit other forms of reuse and local accumulation




Evaluate Reuse in Different Dataflows

 Weight Stationary

— Minimize movement of filter weights

* Output Stationary

— Minimize movement of partial sums

* No Local Reuse

— Don’t use any local PE storage. Maximize global buffer size.

* Row Stationary
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Evaluate Reuse in Different Dataflows

 Weight Stationary

— Minimize movement of filter weights

* Output Stationary

— Minimize movement of partial sums

* No Local Reuse

— Don’t use any local PE storage. Maximize global buffer size.

* Row Stationary

Evaluation Setup Normalized Energy Cost’
e Same Total Area LALUT P 1x (Reference)
e AlexNet EE—m 1
PE_|——>|E| 2%
" 256PEs O——@m 6x
e Batchsize=16 "DRAM | 5T 2 200%




Dataflow Comparison: CONV Layers

2

1'5 l
Normalized 1 I
Energy/MAC

0 -

WS 0S, 0S; O0S. NLR RS
CNN Dataflows

RS uses 1.4x — 2.5% lower energy than other dataflows ‘

L}
i A sascnssevrny MTLees
AT MIT "
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Dataflow Comparison: CONV Layers

Normalized
Energy/MAC I

S, 0S; 0S,
CNN Dataflows

® psums

= weights

W pixels

RS optimizes for the best overall energy efficiency

L
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] Dataflow Comparison: FC Layers

Normalized
Energy/MAC 1 I

S, 0S; 0S,
CNN Dataflows

® psums

= weights

W pixels

RS uses at least 1.3% lower energy than other dataflows

L
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Row Stationary: Layer Breakdown

2.0e10 .

1.5e10 m ALU
Normalized RF
Energy  10e10 [ NoC
(1 MAC =1) W buffer
0.5e10 = DRAM

CONV Layers FC Layers

L
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] Row Stationary: Layer Breakdown

2.0e10 .

1.5e10 ® ALU
Normalized RF
Energy  10e10 [ NoC
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0.5e10 “ DRAM

CONV Layers FC Layers
‘ RF dominates ‘
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] Row Stationary: Layer Breakdown
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Row Stationary: Layer Breakdown
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Energy-Efficient Accelerator

Yu-Hsin Chen, Tushar Krishna, Joel Emer, Vivienne Sze, ISSCC 2016 [paper]

Exploit data statistics
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http://www.rle.mit.edu/eems/wp-content/uploads/2016/02/eyeriss_isscc_2016.pdf

Eyeriss Deep CNN Accelerator

Link Clock' Core Clock DCNN Accelerator
_“I
| 14%x12 PE Array
. Filter Filt
' Inputimage [N Img
I Jecomop A
Psum

Sl Psum

Output Image ERY:

64 bits
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Data Compression Saves DRAM BW

DRAM
Access
(MB)

Apply Non-Linearity (ReLU) on Filtered Image Data

9
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AlexNet Conv Layer

2
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4

5

5

0

Uncompressed
Filters + Images

Compressed

Filters + Images
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Zero Data Processing Gating

Skip PE local memory access

Skip MAC computation
Save PE processing power by 45%

No R/W No Switching
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Chip Spec & Measurement Results!

Technology

TSMC 65nm LP 1PSM

On-Chip Buffer

108 KB

# of PEs

168

Scratch Pad / PE

0.5 KB

Core Frequency

100 — 250 MHz

Peak Performance

33.6 — 84.0 GOPS

Word Bit-width

16-bit Fixed-Point

Natively Supported
CNN Shapes

Filter Width: 1 — 32

Filter Height: 1 - 12
Num. Filters: 1 — 1024
Num. Channels: 1 — 1024
Horz. Stride: 1-12

Vert. Stride: 1,2, 4

< 4000 yum s

1. Yu-Hsin Chen, Tushar Krishna, Joel Emer and Vivienne Sze, “Eyeriss: An Energy-
Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks,”

ISSCC 2016
i
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Benchmark — AlexNet Performance

Image Batch Size of 4 (i.e. 4 frames of 227x227)
Core Frequency = 200MHz / Link Frequency = 60 MHz

Layer Power | Latency | # of MAC | Active# | Buffer Data | DRAM Data
(mW) | (ms) | (MOPs) | of PEs (%) | Access (MB) | Access (MB)
1 332 | 20.9 422 154 (92%) 18.5 5.0
2 288 | 41.9 896 135 (80%) 77.6 4.0
3 206 | 23.6 598 156 (93%) 50.2 3.0
4 235 18.4 449 156 (93%) 37.4 2.1
® 236 10.5 299 156 (93%) 24.9 1.3
Total | 278 | 115.3 2663 | 148 (88%) 208.5 15.4

To support 2.66 GMACs [8 billion 16-bit inputs (16GB) and 2.7 billion
outputs (5.4GB)], only requires 208.5MB (buffer) and 15.4MB (DRAM)

IT microsystems technology laboratories
institute of




Comparison with GPU

This Work NVIDIA TK1 (Jetson Kit)
Technology 65nm 28nm
Clock Rate 200MHz 852MHz
# Multipliers 168 192
On-Chip Storage Buffer: 108KB Shared .Mem: 64KB
Spad: 75.3KB Reg File: 256KB
Word Bit-Width 16b Fixed 32b Float
Throughput!? 34.7 fps 68 fps
Measured Power 278 mW Idle/Active?: 3.7W/10.2W
DRAM Bandwidth 127 MB/s 1120 MB/s 3

1. AlexNet Convolutional Layers Only

2. Board Power

3. Modeled from [Tan, SC11]
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Demo of Image Classification on Eyeriss

U i« T @ 3% TewBinm Q =

[ISSCC 2016] Paper 14.5: Eyeriss Caffe Demo

Yu-Msin Chen’', Tushar Krishna', Joel Emer’ 2
L3

This demo shows Caffe running with th

Jetson TK1 VC707 + Eyeriss

1. System Setup 2. Eyeriss Die Photo

Classification

=
X
4
W
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=
[
=
I 4
»
»

https://vimeo.com/154012013
Integrated with BVLC Caffe DL Framework




Summary of Eyeriss Deep CNN

* Eyeriss: a reconfigurable accelerator for
state-of-the-art deep CNNs at below 300mW

* Energy-efficient dataflow to reduce data movement
* Exploit data statistics for high energy efficiency

* Integrated with the Caffe DL framework and
demonstrated an image classification system

y
Learn more about Eyeriss at [=]; EI
http://eyeriss.mit.edu []
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EM Features: Energy vs. Accuracy

Exponential
10000 P VGG 162
1000
2
Energy/ 100 ~ AIQXNet
Pixel (nJ)
_ 10
Measured in 65nm*
1. [Suleiman, VLSI 2016]
2. [Chen, ISSCC 2016] + HOG!
Linear
* Only feature extraction. Does 0.1 | | | |
not include ensemble,
classification, etc. 0 20 40 60 80

Accuracy (Average Precision)

Measured in on VOC 2007 Dataset
1. DPM v5 [Girshick, 2012]
2. Fast R-CNN [Girshick, CVPR 2015]
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Summary

* Energy-Efficient Approaches
— Exploit sparsity with joint algorithm and hardware design
— Minimize data movement

— Balance flexibility and energy-efficiency

* With energy-efficient approaches, hand-crafted
feature based object detection can have similar
energy-efficiency as video coding

* Linear increase in accuracy requires exponential
Increase in energy

Acknowledgements: This work is funded by the DARPA YFA grant,
TSMC University Shuttle Program, MIT Center for Integrated
Circuits & Systems, and gifts from Intel and Texas Instruments.
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