Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks

Yu-Hsin Chen¹, Joel Emer^{1, 2}, Vivienne Sze¹

¹ MIT ² NVIDIA

Contributions of This Work

- A novel energy-efficient CNN dataflow that has been verified in a fabricated chip, Eyeriss.
- A taxonomy of CNN dataflows that classifies previous work into three categories.
- A framework that compares the energy efficiency of different dataflows under same area and CNN setup.

Eyeriss [ISSCC, 2016]

A reconfigurable CNN processor

35 fps @ 278 mW*

* AlexNet CONV layers

Deep Convolutional Neural Networks

Modern *deep* CNN: up to **1000** CONV layers

Deep Convolutional Neural Networks

Deep Convolutional Neural Networks

consumption

dominating runtime and energy

Input Image (Feature Map) Output Image

Filter

A pixel

A pixel

Filter

A pixel

Filter

A pixel

Filter

A pixel

Filter

A pixel

A pi

Many Input Channels (C)

Worst Case: all memory R/W are **DRAM** accesses

• Example: AlexNet [NIPS 2012] has **724M** MACs

→ 2896M DRAM accesses required

* multiply-and-accumulate

Opportunities: 1 data reuse

Types of Data Reuse in CNN

Convolutional Reuse

CONV layers only (sliding window)

Image pixels Reuse: Filter weights

Image Reuse

CONV and FC layers

Reuse: Image pixels

Filter Reuse

CONV and FC layers (batch size > 1)

Reuse: Filter weights

Opportunities: 1 data reuse

1 Can reduce DRAM reads of filter/image by up to 500×**

** AlexNet CONV layers

- Opportunities: 1 data reuse 2 local accumulation
 - 1 Can reduce DRAM reads of filter/image by up to 500×
 - Partial sum accumulation does NOT have to access DRAM

- Opportunities: 1 data reuse 2 local accumulation
 - 1 Can reduce DRAM reads of filter/image by up to 500×
 - Partial sum accumulation does NOT have to access DRAM
 - Example: DRAM access in AlexNet can be reduced from 2896M to 61M (best case)

Spatial Architecture for CNN

Low-Cost Local Data Access

Low-Cost Local Data Access

How to exploit **1** data reuse and **2** local accumulation with *limited* low-cost local storage?

specialized processing dataflow required!

Taxonomy of Existing Dataflows

- Weight Stationary (WS)
- Output Stationary (OS)
- No Local Reuse (NLR)

Weight Stationary (WS)

- Minimize weight read energy consumption
 - maximize convolutional and filter reuse of weights
- Examples:

[Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014] [Park, ISSCC 2015] [Origami, GLSVLSI 2015]

Output Stationary (OS)

- Minimize partial sum R/W energy consumption
 - maximize local accumulation
- Examples:

[Gupta, ICML 2015] [Peemen, ICCD 2013] [ShiDianNao, ISCA 2015]

No Local Reuse (NLR)

- Use a large global buffer as shared storage
 - Reduce **DRAM** access energy consumption
- Examples:

[DianNao, ASPLOS 2014] [DaDianNao, MICRO 2014] [Zhang, FPGA 2015]

Energy Efficiency Comparison

Same total area

- 256 PEs
- AlexNet Configuration*
 - Batch size = 16

Energy-Efficient Dataflow: Row Stationary (RS)

- Maximize reuse and accumulation at RF
- Optimize for overall energy efficiency instead for only a certain data type

- Maximize row convolutional reuse in RF
 - Keep a filter row and image sliding window in RF
- Maximize row psum accumulation in RF

2D Convolution in PE Array

2D Convolution in PE Array

2D Convolution in PE Array

2D Convolution in PE Array

Convolutional Reuse Maximized

Filter rows are reused across PEs horizontally

Convolutional Reuse Maximized

Image rows are reused across PEs diagonally

Maximize 2D Accumulation in PE Array

Partial sums accumulate across PEs vertically

Dimensions Beyond 2D Convolution

1 Multiple Images 2 Multiple Filters 3 Multiple Channels

Filter Reuse in PE

1 Multiple Images 2 Multiple Filters 3 Multiple Channels

Processing in PE: concatenate image rows

Image Reuse in PE

- Multiple Images 2 Multiple Filters 3 Multiple Channels

Processing in PE: interleave filter rows

Filter 1 & 2 Image 1 Psum 1 & 2 Row 1 Channel 1 *

Channel Accumulation in PE

- Multiple Images (2) Multiple Filters (3) Multiple Channels

accumulate psums

Channel Accumulation in PE

- 1) Multiple Images 2 Multiple Filters 3 Multiple Channels
 - Filter 1 Image 1 Row 1 Row 1 Row 1 Row 1

 Filter 1 Image 1 Row 1

accumulate psums

Processing in PE: interleave channels

CNN Convolution – The Full Picture

Simulation Results

- Same total hardware area
- 256 PEs
- AlexNet Configuration
- Batch size = 16

Dataflow Comparison: CONV Layers

RS uses 1.4× – 2.5× lower energy than other dataflows

Dataflow Comparison: CONV Layers

RS optimizes for the best overall energy efficiency

Dataflow Comparison: FC Layers

RS uses at least 1.3× lower energy than other dataflows

Row Stationary: Layer Breakdown

Summary

- We propose a Row Stationary (RS) dataflow to exploit the low-cost local memories in a spatial architecture.
- RS optimizes for best overall energy efficiency while existing CNN dataflows only focus on certain data types.
- RS has higher energy efficiency than existing dataflows
 - 1.4× 2.5× higher in CONV layers
 - at least 1.3× higher in FC layers. (batch size ≥ 16)
- We have verified RS in a fabricated CNN processor chip, *Eyeriss*

Thank You

Learn more about **Eyeriss** at

http://eyeriss.mit.edu

