Eyeriss: A Spatial Architecture
for Energy-Efficient Dataflow for
Convolutional Neural Networks

Yu-Hsin Chen!, Joel Emer!:2, Vivienne Sze!

TMIT 2 NVIDIA

I I I H Bl Massachusetts

I e NVIDIA
Technology ®

Contributions of This Work

A novel energy-efficient CNN dataflow that has been
verified in a fabricated chip, Eyeriss.

A taxonomy of CNN dataflows that classifies previous
work into three categories.

A framework that compares the energy efficiency of
different dataflows under same area and CNN setup.

e = Eyeriss sscc 2016

A reconfigurable CNN
processor

35 fps @ 278 mW~

* AlexNet CONYV layers

Deep Convolutional Neural Networks

Modern deep CNN: up to 1000 CONYV layers

el)
-_ "l .
i S

Low-level High-level
Features Features

Deep Convolutional Neural Networks

1 -3 layers
t

—13 Classes

High-level
Features

Deep Convolutional Neural Networks

CONV FC
Layer Layers

Convolutions account for more
than 90% of overall computation,
dominating runtime and energy
consumption

High-Dimensional CNN Convolution

Input Image (Feature Map) Output Image
Filter | *

.

~— R —

—0—

Element-wise Partial Sum (psum)
Multiplication Accumulation

High-Dimensional CNN Convolution

Input Image (Feature Map) Output Image

Sliding Window Processing

ir <4

High-Dimensional CNN Convolution

Input Image
i c’

Filter 5 Output Image

ﬂ.r.
T[C.. .‘ /—2

H
I
~— R — Y < H > < E

Many Input Channels (C)

High-Dimensional CNN Convolution

Input Image

Many
Filters (M)

Output Image

|
R
!

H— — E
Many
Output Channels (M)

«— 0 —

High-Dimensional CNN Convolution

Many
Input Images (N) Many
Filters Output Images (N)
M7 .

Cﬂ =
|
R
! 1

~— R — < E

c’|

Memory Access Is the Bottleneck

Memory Read

filter weight
image pixel
partial sum

MAC"

ALU

Memory Write

» updated partial sum

* multiply-and-accumulate

11

Memory Access Is the Bottleneck

Memory Read MAC’ Memory Write

ALU

* multiply-and-accumulate

Worst Case: all memory R/W are DRAM accesses

 Example: AlexNet [NIPS 2012] has 724M MACs
- 2896M DRAM accesses required

i 12

Memory Access Is the Bottleneck

Memory Read MAC Memory Write

ALU

: Mem DRAM

‘ Extra levels of local memory hierarchy

Memory Access Is the Bottleneck

Memory Read MAC Memory Write

o g ALU

: Mem DRAM

‘ Extra levels of local memory hierarchy

Opportunities: @) data reuse

i 14

Types of Data Reuse in CNN

Convolutional Reuse

CONYV layers only
(sliding window)

Fiter ~ Mage
>
= =
Image pixels
Reuse: 9ep

Filter weights

Image Reuse
CONYV and FC layers

Filters

le\ Image
1 |7

7
2

Reuse: Image pixels

Filter Reuse

CONYV and FC layers
(batch size > 1)

Images

Filter A

Reuse: Filter weights

Memory Access Is the Bottleneck

Memory Read MAC Memory Write

ALU

: Mem DRAM

‘ Extra levels of local memory hierarchy

Opportunities: @) data reuse

0 Can reduce DRAM reads of filter/image by up to 500%™
** AlexNet CONV layers

i 16

Memory Access Is the Bottleneck

Memory Read MAC Memory Write

0 : ALU

Mem DRAM

‘ Extra levels of local memory hierarchy ‘

Opportunities: @) data reuse @ local accumulation

0 Can reduce DRAM reads of filter/image by up to 500x
g Partial sum accumulation does NOT have to access DRAM

i 7

Memory Access Is the Bottleneck

Memory Read MAC Memory Write

ALU

‘ Extra levels of local memory hierarchy ‘

Opportunities: @) data reuse @ local accumulation

0 Can reduce DRAM reads of filter/image by up to 500x
g Partial sum accumulation does NOT have to access DRAM

 Example: DRAM access in AlexNet can be reduced
from 2896M to 61M (best case)

i 18

Spatial Architecture for CNN

i Local Memory Hierarchy

Global Buffer (100 —500 kB) . Global Buffer

* Direct inter-PE network
* PE-local memory (RF)

Processing
Element (PE)

Reg File 0.5-1.0kB

p
-
-
- -

Control

i 19

Low-Cost Local Data Access

fetch data to run
a MAC here

Normalized Enerqy Cost’

ALU 1% (Reference)
0.5-1.0kB 1x
NoC: 200 - 1000 PEs | PE | ALU
100 - 500 kB
200x

nir * measured from a commercial 65nm process

Low-Cost Local Data Access

How to exploit @) data reuse and @) local accumulation
with /imited low-cost local storage?

specialized processing dataflow required!

Normalized Enerqy Cost’

ALU 1% (Reference)
0.5-1.0kB 1x
NoC: 200 - 1000 PEs | PE | ALU
100 - 500 kB
200x

nir * measured from a commercial 65nm process 2

Taxonomy of
Existing Dataflows

« Weight Stationary (WS)
« OQOutput Stationary (OS)
 No Local Reuse (NLR)

Weight Stationary (WS)

Global Buffer

 Minimize weight read energy consumption
— maximize convolutional and filter reuse of weights

« Examples:

[Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014]
[Park, ISSCC 2015] [Origami, GLSVLS/ 2015]

23

Output Stationary (OS)

Global Buffer

* Minimize partial sum R/W energy consumption
— maximize local accumulation

« Examples:

[Gupta, ICML 2015] [ShiDianNao, /ISCA 2015]
[Peemen, /ICCD 2013]

24

No Local Reuse (NLR)

Global Buffer

« Use a large global buffer as shared storage
— Reduce DRAM access energy consumption

« Examples:

[DianNao, ASPLOS 2014] [DaDianNao, MICRO 2014]
[Zhang, FPGA 2015]

25

Energy Efficiency Comparison

« Same total area « 256 PEs
« AlexNet Configuration~ < Batch size = 16

2 Variants of OS
()
1.5
Normalized
Energy/MAC
0.5
0
WS OS OS oS Row
* AlexNet CONV layers CNN Dataflows Statlonary

ir <= %

Energy-Efficient Dataflow:
Row Stationary (RS)

« Maximize reuse and accumulation at RF

 Optimize for overall energy efficiency
instead for only a certain data type

1D Row Convolution in PE

Input Image
Filter Output Image

* =

1D Row Convolution in PE

Input Image
Filter Partial Sums

* =

Reg File

1D Row Convolution in PE

Input Image

il
%

Reg File

Partial Sums

30

1D Row Convolution in PE

Input Image

il
%

Reg File

Partial Sums

31

1D Row Convolution in PE

Input Image
Filter Partial Sums

* =

Reg File

1D Row Convolution in PE

« Maximize row convolutional reuse in RF
— Keep a filter row and image sliding window in RF

 Maximize row psum accumulation in RF

Reg File

33

2D Convolution in PE Array

PE 1
[Row 15 Row1 |

2D Convolution in PE Array

PE 1
[IRGw] Rewm |

T PE 2
|

[Rew2E

ir <4

2D Convolution in PE Array

PE 1 PE 4
[IR [et [[IRew [Rewi2m|

T |

PE 2
[Rew2E | ([

PE 3 PE 6
[IRGwas] rewisi] [IReiws [mRewam|

.*&: .*E:E

ir <4

2D Convolution in PE Array

PE 7

T T T

PE 9

l*&= I*E= 0 i =

ir <4

Convolutional Reuse Maximized

PE 1 PE 4 PE 7
PE 2 PE 5 PE 8
PE 3 PE 6 PE 9

Filter rows are reused across PEs horizontally

Convolutional Reuse Maximized

PE 1 PE 4 PE 7
PE 2 PE 5 PE 8
PE 3 PE 6 PE 9

Image rows are reused across PEs diagonally

Maximize 2D Accumulation in PE Array

Row 1 Row 2 Row 3
‘ T PE1H T PE4H T PE7‘
‘ T |=E2H T PE5H T PES‘
T T [e

PE 3 PE 6
|| ||

Partial sums accumulate across PEs vertically

Dimensions Beyond 2D Convolution

@ Multiple Images @ Multiple Filters €) Multiple Channels

Filter Reuse in PE

© Multiple Images

Filter 1 Image 1 Psum 1

Channe 1 | IR« IR =

Filter 1 Image 2 Psum 2

Channei 1 | [N IR =

share the same filter row

Processing in PE: concatenate image rows

Filter 1 Image 1 & 2 Psum 1 & 2

Channel 1 * Row 1 Row 1 — Row 1 Row 1

i 2

Image Reuse in PE

@ Multiple Filters

Filter 1 Image 1 Psum 1

Channel 1 | 30/ ¢ * =

Filter 2 Image 1 Psum 2

Channel 1 BROA * =

share the same image row

Processing in PE: interleave filter rows

Filter1 & 2 Image 1 Psum 1 & 2

Channet 1 TR (TN - IR

i o

Channel Accumulation in PE

€ Multiple Channels

Filter 1 Image 1 Psum 1

Channe 1 [IEE] (R =

Filter 1 Image 1 Psum 1

Channei 2 TN+ IR =

accumulate psums

i 94

Channel Accumulation in PE

€ Multiple Channels

Filter 1 Image 1 Psum 1

Channe 1 [IEE] (R =

Filter 1 Image 1 Psum 1

== Channel 2 [N+ TR - RN

accumulate psums

Processing in PE: interleave channels

Filter 1 Image 1 Psum

Channel 12 2 [T + (NN - TN

i ”

CNN Convolution — The Full Picture

PE

PE
Row 1l Row1 |N[Row1 Row2 |M[Row1[Row3

[e | e | -

[Rowiz [Rowi2i |l [Rewn2 [Rew s [[Rewn2 [Rew

| T

Row3[Row3 |J[Row3 Rows4 |N[Row3[Row5
p & L

™ o
™ o
-

Filter 1 Image 1 & 2 Psum 1 & 2
Multiple images: [T+ N -
Filter1 & 2 Image 1 Psum 1 & 2
Muttiple filters: [ETIIIN + [= (I
Filter 1 Image 1 Psum

Multiple channels: [T RIS - [

ir <4

46

Simulation Results

Same total hardware area
256 PEs
AlexNet Configuration

Batch size = 16

47

Dataflow Comparison: CONV Layers

2

m ALU
RF
Normalized
Energy/MAC % NoC
W buffer
® DRAM

S, O0Sz OS;
CNN Dataflows

RS uses 1.4x — 2.5x lower energy than other dataflows
i <4

Dataflow Comparison: CONV Layers

B psums

Normalized W weights
Energy/MAC X
I B pixels

S, O0Sz OS;
CNN Dataflows

RS optimizes for the best overall energy efficiency

i <= “9

Dataflow Comparison: FC Layers

B psums

Normalized W weights
Energy/MAC 1 X
I B pixels

S, O0Sz OS;
CNN Dataflows

RS uses at least 1.3x lower energy than other dataflows

i <= %

Row Stationary: Layer Breakdown

2.0e10 . Total Energy
80% 4= = 20%
1.5e10 m ALU
Normalized . RF
Energy 10e10 [= NoC
(1 MAC = 1)

W buffer

0.5e10 ® DRAM

CONYV Layers FC Layers

‘ RF dominates ‘ ‘ DRAM dominates ‘
iy <4 .

Summary

We propose a Row Stationary (RS) dataflow to exploit
the low-cost local memories in a spatial architecture.

RS optimizes for best overall energy efficiency while
existing CNN dataflows only focus on certain data types.

RS has higher energy efficiency than existing dataflows

— 1.4x — 2.5x higher in CONV layers
— at least 1.3x higher in FC layers. (batch size = 16)

We have verified RS in a fabricated
CNN processor chip, Eyeriss

i ———

| = Tt

| -

B L 1

- SAASSusssuesesssiestunsesuness it —
< wdoooy —

52

Thank You
[m]:

[=]

Learn more about Eyeriss at

http://leyeriss.mit.edu

