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Why Object Detection?

Self-driving cars




Object Detection System Requirements

4 High Image Resolution




Detection with Deformable Parts Models (DPM)
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General Object Detection Methodology

Localization Classification
(Where?) (True or False?)




Localization: 3D Search
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Classification with DPM Templates
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How Does DPM Work?
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DPM Score = RootScore + max gy gy (PartScore;(dx, dy) — DeformCost;(dx, dy))
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Detection Accuracy

High recall High recall
Low precision High precision High precision

Low recall

Average precision (AP) =
Area under curve

(0< AP <1)

Precision
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Deformable Parts are More Accurate

Detecting parts enhances the accuracy by 2x

Measured on INRIA person dataset”

Challenge: DPM has 35x more computation compared to
without parts (rigid body) detection




* Chip Architecture
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12-level Feature Pyramid
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2 Programmable Detectors
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e Main Contributions

Outline




Optimizations for Energy Efficiency
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Reducing the parts classification overhead

(Pruning & Vector Quantization)

(Basis Projection)

1) Reduce the number of classifications

2) Reduce the cost of each classification




Method 1
Reduce the number of classifications




Parts Classification in Region of Interests
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Parts Classification in Region of Interests
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Feature Storage for Parts Classification

 Store features for reuse by parts to avoid re-computation

Dense roots and

parts scoring Proposed dense root scoring and pruning
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Vector Quantization

16x reduction in memory size (520 KB vs. 32 KB)

L 2Xx reduction in overall chip area )




Method 2
Reduce the cost of each classification




Multiplication by Zero Can be Skipped

Classification = Dot product

Dot product - 3 K multiplications
HD image - 88 M multiplications
HD pyramid - 235 M multiplications

With more zero weights:
 Fewer multiplications
 Smaller weights memory size and BW




Project the Classification to a Sparse Space

(H,W) =

H:Z “d5d> = Z aq(H,Sq) = Zadpd = (P, a)

d d d

H: HOG features W: Template weights
S: Basis vectors
P: Projected features o.: Projected weights
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Project the Classification to a Sparse Space
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Feature Basis Projection Savings

56% fewer multiplications

w 34% smaller weights memory BW

w 43% less power
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" Feature Pyramid )

Overall Optimizations Savings
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Outline

* Chip Specifications and Comparisons
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Chlp Die Photo and Specifications
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Technology 65nm CMOS

Chip size 4.0 x 4.0 mm?

Logic gates 3283 kgates

SRAM 280.1 KB

Supply 0.77-1.11V
1.9 Frequency 62.5-125 MHz
1.7 = | Frame rate 30— 60 fps
" é Resolution 1920x1080
1.1 = | Power 58.6 —216.5 mW
8:3 g Energy/pixel | 0.94-1.74 n)
0.5 Two detectors, 97% pruning.

0.8 0.9 1 1.1 1.2
Supply Voltage (V)




Energy Scalability

Enabling one detector

Enabling two detectors

49.4 mW
(97% pruning)

34.7 mW

No parts With parts

58.6 mW
(97% pruning)

40.3 mW

No parts With parts

Ml Feature Generation W Root M Feature Storage M Parts

* 1-detector power : 15% classification & 25% feature storage

* Adding an extra detector increases power by only 19%




Detection Examples with DPM Chip
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Comparison with ASIC Object Detectors

JSPS 2014 This work
Process 65 nm 65 nm
Chip Size (mm?) 4.2x2.1 4.0x4.0
Voltage 0.7V 0.77V
Resolution 1920x1080 1920x1080
#Object Classes 2 2
Frame rate 30 30
Multi-scale No 12 levels
Deformable Parts No 8 parts
Accuracy (AP) 0.166 0.80 4.7x more accurate”
Power (mW) 84 58.6 “"INRIA person dataset
Energy (nJ/pixel) 1.35 0.94 30% less energy




Summary

« A58.6mW object detection accelerator that processes
1920x1080 videos at 30 fps

— Uses deformable parts for 2x increase in accuracy
— Two programmable object detectors supporting 12 scales

* Pruning, vector quantization and feature basis projection
reduce the DPM classification cost

— Reduce power by 5x and memory size by 3.6x

* This accelerator enables object detection to be as energy-
efficient as video compression at < 1nJ/pixel
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