A 58.6mW Real-Time Programmable Object Detector with Multi-Scale Multi-Object Support Using Deformable Parts Model on 1920x1080 Video at 30fps

<u>Amr Suleiman</u>, Zhengdong Zhang, and Vivienne Sze

Massachusetts Institute of Technology

Symposia on VLSI Technology and Circuits

Why Object Detection?

Object Detection System Requirements

High Image Resolution

Outline

- Detection with Deformable Parts Models (DPM)
- Chip Architecture
- Main Contributions
- Chip Specifications and Comparisons
- Summary

General Object Detection Methodology

Localization (Where?)

Classification (True or False?)

Localization: 3D Search

Classification with DPM Templates

HOG: Histogram of Oriented Gradients

P. F. Felzenszwalb et al., TPAMI 2010

How Does DPM Work?

P. F. Felzenszwalb et al., TPAMI 2010

Detection Accuracy

Slide 8

Deformable Parts are More Accurate

Detecting parts enhances the accuracy by 2x

Measured on INRIA person dataset*

<u>Challenge</u>: DPM has **35x** more computation compared to without parts (rigid body) detection

*[http://pascal.inrialpes.fr/data/human/]

Outline

- Detection with Deformable Parts Models (DPM)
- Chip Architecture
- Main Contributions
- Chip Specifications and Comparisons
- Summary

12-level Feature Pyramid

2 Programmable Detectors

Programmable DPM model with a maximum template size of **128x128 pixels**

Slide 12

Outline

- Detection with Deformable Parts Models (DPM)
- Chip Architecture
- Main Contributions
- Chip Specifications and Comparisons
- Summary

Optimizations for Energy Efficiency

<u>Goal:</u> Reducing the parts classification overhead

Methods:

 Reduce the number of classifications (Pruning & Vector Quantization)
 Reduce the cost of each classification (Basis Projection)

Method 1

Reduce the number of classifications

Parts Classification in Region of Interests

Slide 16

Parts Classification in Region of Interests

Feature Storage for Parts Classification

• Store features for reuse by parts to avoid re-computation

Vector Quantization

16x reduction in memory size (520 KB vs. 32 KB)

2x reduction in overall chip area

Method 2

Reduce the cost of each classification

Multiplication by Zero Can be Skipped

Classification = Dot product

Dot product \rightarrow 3 K multiplicationsHD image \rightarrow 88 M multiplicationsHD pyramid \rightarrow 235 M multiplications

With more zero weights:

- Fewer multiplications
- Smaller weights memory size and BW

Project the Classification to a Sparse Space

Project the Classification to a Sparse Space

Overall Optimizations Savings

*mAP: mean Average Precision, on PASCAL VOC2007 with 20 classes

Outline

- Detection with Deformable Parts Models (DPM)
- Chip Architecture
- Main Contributions
- Chip Specifications and Comparisons
- Summary

Chip Die Photo and Specifications

Technology	65nm CMOS	
Chip size	4.0 x 4.0 mm ²	
Logic gates	3283 kgates	
SRAM	280.1 KB	
Supply	0.77 – 1.11 V	
Frequency	62.5 – 125 MHz	
Frame rate	30 – 60 fps	
Resolution	1920x1080	
Power	58.6 – 216.5 mW	
Energy/pixel	0.94 – 1.74 nJ	

Two detectors, 97% pruning.

Energy Scalability

- 1-detector power : 15% classification & 25% feature storage
- Adding an extra detector increases power by only **19%**

Detection Examples with DPM Chip

- Live video feed
- 1920x1080
- 30fps
- Detecting pedestrians

- Fixed frames
- 1920x1080
- Detecting cars
 & pedestrians

Comparison with ASIC Object Detectors

	JSPS 2014	This work	
Process	65 nm	65 nm	
Chip Size (mm ²)	4.2×2.1	4.0x4.0	
Voltage	0.7V	0.77V	
Resolution	1920x1080	1920x1080	
#Object Classes	2	2	
Frame rate	30	30	
Multi-scale	No	12 levels	
Deformable Parts	No	8 parts	
Accuracy (AP)	0.166	0.80	4.7x more accura
Power (mW)	84	58.6	*INRIA person dataset
Energy (nJ/pixel)	1.35	0.94	30% less energy

Summary

- A 58.6mW object detection accelerator that processes 1920x1080 videos at 30 fps
 - Uses **deformable parts** for 2x increase in accuracy
 - Two programmable object detectors supporting 12 scales
- Pruning, vector quantization and feature basis projection reduce the DPM classification cost
 - Reduce power by **5x** and memory size by **3.6x**
- This accelerator enables object detection to be as energyefficient as video compression at < 1nJ/pixel

Acknowledgement

DARPA, Texas Instruments and TSMC University Shuttle