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Abstract A real-time and energy-efficient multi-scale

object detector hardware implementation is presented

in this paper. Detection is done using Histogram of Ori-

ented Gradients (HOG) features and Support Vector

Machine (SVM) classification. Multi-scale detection is

essential for robust and practical applications to de-

tect objects of different sizes. Parallel detectors with

balanced workload are used to increase the through-

put, enabling voltage scaling and energy consumption

reduction. Image pre-processing is also introduced to

further reduce power and area costs of the image scales

generation. This design can operate on high definition

1080HD video at 60 fps in real-time with a clock rate of

270 MHz, and consumes 45.3 mW (0.36 nJ/pixel) based

on post-layout simulations. The ASIC has an area of

490 kgates and 0.538 Mbit on-chip memory in a 45nm
SOI CMOS process.

Keywords Object Detection · Histogram of Oriented

Gradients · Multi-scale · Low power architectures ·
Embedded vision

1 Introduction

Object detection is needed for many embedded vision

applications including surveillance, advanced driver as-

sistance systems (ADAS) [1], portable electronics and

robotics. For these applications and others, it is desir-

able for object detection to be real-time at high frame

A. Suleiman, V. Sze
Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology,
77 Massachusetts Ave, room 38-260
Cambridge MA, 02139

E-mail: suleiman, sze@mit.edu

Fig. 1 Examples of pedestrians with different sizes based on
their distances from the camera and/or their different heights.
Images are taken from INRIA person dataset [5].

rates, robust and energy-efficient. Real-time processing

is necessary for applications such as ADAS, and au-

tonomous control in unmanned aerial vehicles (UAV),

where the vehicle needs to react quickly to fast changing

environments. High frame rate enables faster detection

to allow more time for course correction. For detection

robustness, it is essential that detectors support mul-

tiple image scales to detect objects with variable sizes.

As shown in Fig. 1, the size difference can be due to dif-

ferent distances from the camera (i.e. an object’s height

is inversely proportional to its distance from the cam-

era [2]), or due to the actual size of the object (e.g.

pedestrians with different heights). In addition, high

resolution images, such as high definition (HD), enable

early detection by having enough pixels to identify far

objects, which is particularly important for fast moving

objects. Finally, for energy consumption, in both UAV

and portable electronics, the available energy is limited

by the battery whose weight and size must be kept to a

minimum [3]. Additionally, heat dissipation is a crucial

factor for ADAS application [4].

A conventional method of object detection involves

translating the image from pixel space into a higher di-

mensional feature space. Classification is then used at

different regions in the image to decide whether a spe-

cific object exists or not. Histogram of Oriented Gradi-

ents (HOG), which looks at the distribution of edges, is
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Fig. 2 Object detection algorithm using HOG features.

a widely accepted feature for object detection [6]. HOG

features provide a reasonable trade-off between detec-

tion accuracy and complexity compared to alternative

richer features [7]. A combination of other types of fea-

tures can be added to HOG for more accurate detec-

tion with the cost of more computation power. How-

ever, no single feature has been shown to outperform

HOG, which makes HOG-based detection the baseline

for object detection systems [2].

In this paper, we describe a hardware-friendly real-

time energy-efficient HOG algorithm for object detec-

tion, with multi-scale support. The resulting implemen-

tation delivers high-throughput processing to achieve

real-time, robust and accurate object detection at high

frame rates with low hardware and energy costs. The

main contributions of this work are:

1. Efficient scale selection and generation for multi-

scale detection.

2. Parallel detectors with voltage scaling.

3. Image pre-processing to reduce multi-scale memory

and processing overhead.

The rest of the paper is organized as follows. Sec-

tion 2 provides a survey of existing HOG-based object

detector implementations. Section 3 describes the HOG

detection algorithm and the importance of multi-scale

detection for robustness. Section 4 describes the hard-

ware architecture of the HOG-based object detector.

Section 5 introduces the parallel detectors architecture

and voltage scaling. Then, image pre-processing is in-

troduced in Section 6. We present the performance met-

rics including detection accuracy and hardware com-

plexity in Section 7 and conclude in Section 8.

2 Previous Work

The majority of the published implementations of HOG-

based object detection are on CPU and GPU platforms.

In addition to consuming power in hundreds of Watts

(e.g., Nvidia 8800 GTX GPU consumes 185W [8]),

which is not suitable for embedded applications, they

often cannot reach high definition (HD) resolutions. Au-

thors in [9] demonstrate a real-time object detection

system with multi-scale support on a CPU processing

320×240 pixels at 25 frames per second (fps). The im-

plementation in [10] achieves higher throughput on a

GPU at 100 fps using the approach presented in [7] to

speed up feature extraction, but with a resolution of

640×480 pixels.

For higher throughput, FPGA-based implementa-

tions have recently been reported. Different parts of

the detector are implemented in [11] on different plat-

forms: HOG feature extraction is divided between an

FPGA and a CPU, and SVM classification is done on

a GPU. It can process 800×600 pixels at 10 fps for

single scale detection. The entire HOG-based detector

is implemented in [12] on an FPGA, and can process

1080HD video (1920×1080 pixels) at 30fps. However,

the implementation only supports a single image scale.

An ASIC version of this design is presented in [13], with

dual cores to enable voltage scaling for power consump-

tion of 40.3mW for 1080HD video at 30fps, but still

only supports a single image scale. A multi-scale ob-

ject detector is demonstrated on an FPGA in [14] that

can process 1080HD at 64 fps. The 18 scales are time-

multiplexed across 3 successive frames. As a result, ef-

fectively only 6 scales are processed per frame. It should

be noted that these hardware implementations have rel-

atively large on-chip memory sizes (e.g., [13] uses 1.22

Mbit on ASIC, [14] uses 7 Mbit on FPGA), which con-

tributes to increased hardware cost.

Thus, from the previous discussion, none of the ex-

isting implementations satisfies all the desired require-

ments for accurate and robust object detection in em-

bedded systems, which include real-time, high resolu-

tion (1080HD), high frame rate (>30 fps), multiple im-

age scale, low power and low hardware costs.
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3 Overview of the HOG algorithm

Fig. 2 shows a block diagram of the steps involved in

object detection using HOG features as presented in [6].

The image is divided into non-overlapping 8×8 pixels

patches called cells, where gradients are calculated at

each pixel. A histogram of the gradient orientations

with 9 bins is generated for each cell. The histogram

is then normalized by its neighboring cells to increase

robustness to texture and illumination variation. For

each cell, the normalization is performed across blocks

of 2×2 cells resulting in a final 36-D HOG feature vec-

tor.

The HOG feature vector is extracted for cells in a

predefined detection window. In this work, the detec-

tion window is chosen to be 128×64 pixels which is suit-

able for pedestrian detection [6]. This window sweeps

the entire image with non-overlapping cells. A conven-

tional way to perform detection is by training a sup-

port vector machine (SVM) [15] classifier for the prede-

fined detection window size. The classifier has the same

dimension as the detection window. The classification

output is referred to as a score, and is compared to a

threshold to make a detection decision. This operation

is repeated as the detection window sweeps the image.

As mentioned in Section 1, scaling is an important

factor in object detection algorithms since there is no

prior knowledge about object size/distance from cam-

era. Generally, and since most of the features are not

scale invariant, there are two methods to perform multi-

scale detection. The first naive approach is to have mul-

tiple SVM classifiers, each trained for the same object

at a different size. In this case, the weights of the differ-
ent SVM classifiers must be determined and a unique

detector is used for each size. This approach is rarely

used because it increases the complexity of the training

process where multiple classifiers have to be trained. In

addition to that, and from the hardware point of view,

these classifiers coefficients have to be stored on-chip

and it is shown later in this work that the SVM weights

memory consumes a significant amount of power.

The second approach, which is conventionally used

in object detectors [2] and is carried out in this work,

is to have only one SVM classifier for one detection

window size, and to generate an image pyramid com-

posed of multiple scaled versions of the same frame,

which is then processed by the same detector as shown

in Fig. 3. In this approach, small objects can be de-

tected in the high resolution scales while large objects

can be detected in the low resolution scales, all with

the same classifier. The ratio between the dimensions

of successive scales in the image pyramid is called the

scale factor.

Fig. 3 Image pyramid with multiple scales. Processing all
scales with the same SVM template can detect objects of
different sizes.

Fig. 4 Precision-Recall curves for INRIA person dataset [5]
using different scaling factors: single scale (AP=0.166), scale
factor of 2 (AP=0.275), scale factor of 1.2 (AP=0.391), and
scale factor of 1.05 (AP=0.401, used in the original HOG
algorithm [6]).

The precision-recall curve shown in Fig. 4 is one

method to measure the detection accuracy. Increasing

the number of processed scales, by reducing the scale

factor, increases the Average Precision (AP)1 from 0.166

with single scale to 0.401 with scale factor of 1.05 (44

scales per 1080HD frame). However, this comes at the

cost of increased computation in terms of generating

the image pyramid and processing the newly generated

pixels for each scale.

4 Hardware Architecture

In this work, a cell-based approach is used where one

cell is processed at each stage of the architecture. There

1 Average precision measures the area under precision re-
call curve. Higher average precision means better detection
accuracy.
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Fig. 5 Scanning order in reading the pixels from a frame
(1080HD for this example). (a) Row raster scan. (b) Column
raster scan.

are various orders in which the cells of a 2-D image can

be processed by the object detection hardware. The fol-

lowing two orders were examined as shown in Fig. 5:

raster scan in row order and raster scan in column

order. While the processing order does not affect the

detection accuracy, it does impact the size of the on-

chip memory in the hardware. Note that the compu-

tation pipeline of the object detection core, consisting

of the detector and the scale generator, is the same for

both vertical and horizontal scans; only the memory

controller and memory sizes change. In the following

sections, an architecture based on column raster scan

will be discussed. In Section 7.3, a detailed hardware

comparison between the two approaches is presented.

4.1 Detector

The detector can be divided into HOG feature extrac-

tion and SVM classification. The feature extraction shown

in Fig. 6 includes cell histogram generation, the his-

togram buffer, and histogram normalization. The SVM

classification shown in Fig. 9 includes multiply-and-

accumulate (MAC) units, the accumulation buffer, and

the SVM weights buffer.

4.1.1 HOG feature extraction

Fig. 6 shows the block diagram of the HOG feature

extraction unit. It is composed of two key blocks: cell

histogram generation and histogram normalization. In

the cell histogram generation, a gradient filter [-1 0 1]

is used to generate a pair of horizontal and vertical

gradients at each pixel in the 8×8 input cell2. The ori-

entation and the magnitude of the gradient are then

calculated from this pair, and a histogram of 9 bins is

generated for the cell. To reduce the implementation

cost, the following approximations were performed:

– Orientation: We carried out the orientation binning

scheme similar to [11,16]. As the orientation is only

used to choose the histogram bin, the actual angle

of the gradient does not need to be calculated. The

limit angles for each bin are known constants (θi), as

shown in Fig. 7. Each gradient bin can be calculated

using constant multiplications rather than complex

computation to calculate the actual gradient angle.

– Magnitude: Computing the L2-norm gradient mag-

nitude similar to what is used in [6] requires a square

root operation which is complex to implement in

hardware. An L1-norm magnitude, which doesn’t

require a square root, is used in this work instead.

L1-norm and L2-norm are not linearly dependent

but they are strongly correlated. The overall detec-

tion accuracy does not degrade with the L1-norm

magnitude, which suggests that HOG feature is less

sensitive to the gradient magnitude and more sensi-

tive to the gradient orientation.

As shown in Fig. 2, each cell requires its neighbor-
ing 8 cells to create four overlapped blocks for normal-

ization. Accordingly, the 9-bin cell histogram must be

stored in a line buffer so that it can be used to compute

the normalized histogram with respect to the different

blocks. The buffer stores 3 columns of cell histograms.

Each histogram bin requires 14-bit, resulting in a total

of 126-bit per a cell histogram.

The normalization is then done by dividing the 9-bin

histogram by the energy (L2-norm) of each of the four

overlapped blocks. Unlike the gradient magnitude, us-

ing L1-norm here to compute the block energy results in

about 5% degradation in performance [6]. The L2-norm

is computed from sum of square of the histogram bins

across the four corresponding cells for each block. The

square root is then taken using a simple non-restoring

square root module; which is time shared across the

four blocks. Finally, 9 sequential fixed point dividers

2 Different gradient filters are tested in [6] like 1-D, cubic,
3×3 Sobel as well as 2×2 diagonal filters. Simple 1-D [-1 0 1]
filter works the best.
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Fig. 6 Block diagram of HOG feature extraction with average input and output bandwidths.

Fig. 7 Histogram bins can be calculated without the actual
value of the gradient angle. In the shown example, the pixel
is assigned to bin 2 if the shown inequality has been satisfied.
Note that (θi) is constant for all i’s.

are used (one per bin) to generate the normalized HOG

feature. These fixed-point dividers are customized to

exploit the fact that the normalized values are always

fractions (i.e., there is no integer part in the division

output). Based on simulations, the bit-width for each

normalized bin is chosen to be 9-bit to maintain the

detection accuracy. After normalization, the output is

a 36-D vector representing the HOG feature.

4.1.2 SVM Classification

In this work, a linear SVM classifier is trained off-line

and its weights are loaded to an on-chip buffer, so that

the detector can be configured for different objects. The

bit-width of the SVM weights is reduced to minimize

both size and bandwidth of the on-chip buffer. The

4,608 SVM weights (representing 128×64 pixels per de-

tection window) are quantized to a 4-bit signed fixed-

point, with a total memory size of 0.018 Mbit.

Fig. 8 Example of a shared cell across overlapped windows.
8×4 cells per window are shown for simplicity.

An on-the-fly approach similar to [13] is carried out

for classification. The HOG feature of each cell is imme-

diately used for classification once it is extracted so that

it is never buffered or recomputed. This reduces on-chip

memory requirements and external memory bandwidth

as each pixel is only read once from the off-chip frame

buffer. All calculations that require the HOG feature

must be completed before it is thrown away. Fig. 8

shows a simple example, with a small detection win-

dow size of 8×4 cells, of how several detection windows

share a cell. Each cell effectively appears, and must be

accumulated, at all positions in overlapped detection

windows. For a 128×64 pixels detection window, each

cell is shared with (16×8 = 128) windows, but at dif-

ferent positions within each window.

The on-the-fly classification block is shown in Fig. 9.

The processing is done using a collection of MACs. Each

MAC contains two multipliers and one adder to com-

pute a partial dot product of 2 values of the detection

window features and the SVM weights, and another
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Fig. 9 Block diagram of the on-the-fly SVM classification
unit.

adder to accumulate the partial dot products. Thus,

it takes 18 cycles to accumulate all 36 dimensions for

a given cell position. Two columns of cells, out of the

eight columns in the detection window, are processed in

parallel, requiring 16×2 MACs. Accordingly, 18×4 cy-

cles are required to complete the 4,608 multiplications

for the whole detection window. Using this approach,

the 17-bit accumulation values are stored instead of the

HOG features (36×9-bit), resulting in a 19× reduction

in the required buffer size.

4.2 Scale Generator

A scale generator is used to generate the image pyra-

mid, as shown in Fig. 3. The key blocks required to gen-

erate the pyramid include low pass filters, down sam-

plers, pixel line buffers and interpolators as shown in

Fig. 10.

4.2.1 Scale Factor Selection

There is a trade-off in selecting the scale factor between

the detection accuracy and the number of cells to pro-

cess. Table 1 shows an exponential increase in the num-

ber of cells per frame as more scales are used (i.e., re-

ducing the scale factor). Using a scale factor of 1.05 in

the baseline implementation [6] increases the workload

by more than 10× compared to a single scale. In this

work, a scale factor of 1.2 is chosen as it introduces only

0.01 reduction in AP, with an increase of only 3.2× in

the workload. For a 1080HD frame and a scale factor of

1.2, 12 scales per frame are required in the image pyra-

mid. This careful selection of the scale factor results in

a 3.3× reduction in the number of cells generated per

frame compared to the baseline implementation.

Table. 1 Scale factor effect on detection accuracy, with num-
ber of cells per 1080HD frame in the image pyramid. AP
numbers are calculated on the INRIA person dataset [5].

Scale Factor AP Scales Cells Increase
Single-scale 0.166 1 32,400 1.0×

2 0.275 4 43,030 1.3×
1.4 0.337 7 65,530 2.0×
1.3 0.372 9 78,660 2.4×
1.2 0.391 12 104,740 3.2×
1.1 0.398 23 184,450 5.7×
1.05 0.401 44 344,220 10.6×

4.2.2 Scale Generation Architecture

Fig. 10 shows a block diagram of the scale generator

module. Pixels are streamed-in once from the off-chip

frame buffer. Low pass filters are used to process the

pixels to prevent aliasing before downsampling by two

and by four, generating two octaves. The original and

the two octaves images are partially stored in on-chip

line buffers. The buffers store 25 columns of pixels of

each image, which is sufficient to generate the different

scales. The buffers are shared across scales within the

same octave.

As shown in Fig. 10, the 12 required scales are gener-

ated as follows: the fifth and ninth scales, which ideally

would have a scaling factor of 2.07 and 4.3 respectively,

are approximated to be the octaves (i.e. scale factors

of 2 and 4 respectively) to reduce number of calcula-

tions. Using bilinear interpolation, three scales are gen-

erated from each octave with scale factors of 1.2, 1.44

and 1.73. The bilinear interpolation for the scaled im-

age generation begins as soon as the supporting pixels

are available in the shared pixel line buffers. An on-the-
fly interpolation is used so that a minimum number of

pixels is buffered before interpolation. The generated

scales are passed directly to feature extraction module

and no scaled images are stored on-chip after interpo-

lation.

5 Parallelism and Voltage Scaling

Multi-scale detection increases the power consumption

relative to single-scale due to the scale generation over-

head and the processing of the additional scales. If a sin-

gle detector is used, clock frequency and voltage must

be increased to process these additional scales while

maintaining the same throughput. Thus in this work,

multiple parallel detectors are used in order to reduce

the clock frequency and voltage while maintaining the

same throughput.

Three different configurations are tested for the par-

allel detectors architecture: one, three and five detec-
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Fig. 10 Scale generation architecture with average input and output bandwidths.

tors. Fig. 11 shows the trade-off between area, power

and throughput in each architecture using column raster

scan mode. On the left of Fig. 11, the supply voltage

is held constant at 0.72V, and a throughput of 30, 60,

and 80 fps is achieved by the one, three and five detec-

tors respectively. On the right of Fig. 11, the through-

put is held constant at 60 fps, and the supply voltage

is varied for each configuration to evaluate the energy

consumption. To achieve a constant 60 fps throughput,

the supply voltage must be increased to 1.1 V for the

one-detector configuration, and can be decreased to 0.6

V for the five-detector configuration. As expected, large

energy reduction is achieved by using three parallel de-

tectors compared to a single detector due to voltage

scaling. Although the five-detector architecture gives a
slightly lower energy point, the three-detector architec-

ture is selected because it offers a better energy versus

area trade-off. The same behavior is expected regardless

of cell processing order.

A simple replication of the hardware to implement

the parallel detectors results in extra area and power

consumption, which can be avoided. The parallel de-

tectors are using the same SVM template to detect one

object. As a result, a separate buffer for SVM weights in

each detector means replicating information and wast-

ing memory area and bandwidth. In this architecture,

the detectors are carefully synchronized such that they

share the same SVM weights at any moment. This en-

ables using only one buffer for SVM weights for all de-

tectors, which results in 3× reduction in memory size

and bandwidth, and 20% reduction in the overall sys-

tem power.

Fig. 12 shows the overall detection system. The pix-

els from the 12 scales are distributed to three paral-

Fig. 11 Throughput with constant supply voltage of 0.72 V
(left) and energy with constant throughput of 1080HD at 60
fps (right) for the three different detectors configurations.3

lel detectors. The distribution is done such that the

three detectors have balanced workloads. The original

HD scale is passed to Detector (1), the next 2 scales

to Detector (2), and the remaining 9 scales to Detec-

tor (3). All three detectors are identical except that the

size of the histogram and the accumulator buffers are

different based on the number and the size of the scales

processed by each detector. The exact memory sizes in

each detector are shown in Table 5. With three paral-

lel detectors and voltage scaling, a 3.4× energy saving

is achieved compared to a single detector as shown in

Fig. 11.

3 The energy numbers for 0.6 V and 1.1 V supplies are
estimated from a ring oscillator voltage versus power and fre-
quency curves. SRAM minimum voltage is 0.72 V.
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Fig. 12 Object detection system architecture.

Fig. 13 Pedestrian image with the corresponding trained
SVM template in (a) original and (b) gradient magnitude rep-
resentations. Image is taken from INRIA person dataset [5].

6 Image Pre-processing

Image pre-processing can reduce the overhead cost of

generating the scales, with minor impact on the detec-

tion accuracy.

6.1 Coarse Resolution of Pixel Intensity

The size of the pixel line buffers used in the scale gen-

erator block is about half of the overall system mem-

ory size. One way to reduce the size of these buffers is

to quantize the pixel intensity below the conventional

8-bit. This also reduces the logic of the multipliers in

the interpolation block. Fig. 15 shows the AP versus

the pixel intensity bit-width (dashed line). Because the

HOG feature is fairly robust to quantization noise, the

intensity can be quantized down to 4-bit with an AP

loss of only 0.015. Going from 8-bit to 4-bit pixel inten-

sity results in a 50% reduction in the pixel line buffers

size. However, this can be further reduced as discussed

in the next section.

Fig. 14 Histogram of pixel intensities. Left column shows
8-bit bit-width. Right column shows coarse quantization.

6.2 Detection on Gradient Image

The detection accuracy mainly depends on the features

being able to capture the main characteristics of the ob-

ject. Since the HOG feature is a function of edge orien-

tations, it should have consistent detection performance

on other image representations that preserve edge ori-

entations. Fig. 13 shows two representations of the same

pedestrian: the left is the original intensity image, and

the right is the gradient magnitude image. The gradi-

ents are calculated using a simple [-1 0 1] filter. Edges

that compose the pedestrian contour are visible in both

images. To further demonstrate that detection on gradi-

ent magnitude images is reasonable, Fig. 13 shows also
the trained SVM templates on both original and gradi-

ent magnitude training images. Both templates capture

similar pedestrian characteristics (e.g. head, shoulders,

legs).

The motivation behind processing gradient magni-

tude images is to further reduce the pixel intensity bit-

width, and to reduce the switching activity in the hard-

ware because the gradient magnitude image is usually

more sparse. Fig. 14 shows the intensity histograms

for the original and the gradient magnitude represen-

tations of an example image. The original image pix-

els intensities are well distributed across the whole dy-

namic range of 8-bit. However in the gradient magni-

tude image, most of the pixels intensities are concen-

trated around low values and do not cover the whole

dynamic range. Thus, the gradient magnitude image

can use fewer bits per pixel because of the dynamic

range reduction.

Fig. 15 shows that the original images give a 0.02

better AP at high pixel intensity bit-width compared
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Fig. 15 Average precision (AP) values versus pixel resolu-
tion for both original and gradient magnitude images.

to the gradient magnitude images (solid line). At 4-bit,

both original and gradient magnitude images have the

same AP. Reducing the bit-width to 3-bit in gradient

magnitude images approximately maintains the same

AP and has a 25% smaller pixel line buffer size.

The image pre-processing results in a 24% reduc-

tion in the overall system power. The area and power

breakdown for both 8-bit original image and 3-bit gra-

dient magnitude image detectors are shown in Table 2.

The pre-processing required for the gradient magnitude

image detection architecture introduces very small area

and power overhead. However, it results in a 45% power

reduction in the scale generator block. The pixel line

buffers size is reduced from 0.363 Mbit to 0.136 Mbit.

Smaller multipliers are used in the interpolation unit,
resulting in 30% area saving. The detector power is also

reduced by 20% due to smaller subtractors and accu-

mulators in the histogram generation unit, and due to

the reduction in switching activity in the data-path.

7 Results

As mentioned in section 4, this architecture is cell-based

where one cell is processed at each stage in the pipeline.

Fig. 16 shows a timing diagram of the detection pipeline

with different top level modules. These modules are

running in parallel as shown and each one is processing

a different cell at a time in unit time intervals of 78

cycles. Number of cycles is balanced between modules

to reduce idle times and maximize throughput. Each

module is pipelined internally as well to maximize the

operating clock frequency.

Table. 2 Area and power breakdown for object detector ar-
chitecture for both original and gradient magnitude images.
Numbers are based on post-layout simulations with 45nm SOI
CMOS process.

Original Gradient

Area (kgates)

Pre-proc. n/a 7
Scale Gen. 240 167
Detector 1 90 86
Detector 2 102 100
Detector 3 133 130
Total 565 490

Power (mW)

Pre-proc. n/a 0.5
Scale Gen. 17.10 9.30
Detector 1 13.10 10.10
Detector 2 11.60 9.50
Detector 3 10.15 8.05
SVM mem. 7.85 7.85
Total 59.80 45.30

Fig. 17 AP, power and memory sizes for different object
detection architectures. (A) Single-scale with one detector at
0.6 V. (B) Multi-scale with one detector at 1.1 V. (C) Multi-
scale with three parallel detectors at 0.72 V. (D) Multi-scale
with three parallel detectors and pre-processing at 0.72 V.4
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Fig. 16 Detection architecture pipeline with number of cycles required by each module.

Table. 3 Optimized fixed point bit-width.

Parameter Sign Integer Fraction
Gradient magnitude 0 8 0
Cell histogram bin 0 14 0
Block energy 0 26 0
HOG feature bin 0 0 9
SVM weights 1 0 3
SVM accumulator 1 3 13

7.1 Detection Accuracy

The INRIA person dataset [5] was used to evaluate

the impact of the modified parameters on the detec-

tion accuracy. These modifications include: using L1-

norm for the gradient magnitude, fixed-point numbers

representation (shown in Table 3), approximating the

image pyramid with a scale factor of 1.2, and image pre-

processing. Our implementation, which supports multi-

scale detection, without pre-processing is close to the

original HOG algorithm [6] with 0.389 AP compared

to 0.4. With pre-processing, our implementation gives

0.369 AP.

7.2 Architectural and algorithmic optimization results

Fig. 17 shows the design space of the detection accu-

racy, the memory size and the power numbers for dif-

ferent architectures at the same throughput (1080HD

video at 60 fps). Our three main contributions can be

shown as follows:

1. Introducing multi-scale detection boosts the detec-

tion accuracy by 2.4×. The overhead of the image

pyramid generation and the processing of the new

scales results in 14× increase in power and 8.8× in-

crease in memory size compared to a single detector

(A to B in Fig. 17).

4 Energy numbers for 0.6 V and 1.1 V supplies are esti-
mated from a ring oscillator voltage versus power and fre-
quency curves. SRAM minimum voltage is 0.72 V.

2. Parallelism reduces the power by 3.4× due to volt-

age and frequency reduction without affecting the

detection accuracy. No change in the memory size

is achieved (B to C Fig. 17).

3. Image pre-processing reduces multi-scale memory

and processing overhead, resulting in a 24% over-

all power reduction and a 25% overall memory size

reduction (C to D in Fig. 17).

7.3 Image Scanning Order

As discussed in Section 4, two scan modes can be imple-

mented; column and row raster scans. Both modes use

similar architecture and layout floorplan. The only dif-

ference is the on-chip buffers size and their correspond-

ing address decoder logic. Row line buffers are used in

row raster scan architecture and column line buffers

are used in column raster scan architecture. Row raster

scan results in higher memory size because usually the

frame width is larger than its height. For example, the

ratio between 1080HD frame width to its height is 16:9;

thus a column raster scan would reduce the memory size

by approximately 16
9 ×. However, if we account for the

fact that cameras typically output pixels in row raster

scan order, processing the cells in the same order will

reduce latency and additional memory controller com-

plexity to reorder pixels from row to column order. The

decision of processing order will depend on the overall

system design parameters, such as camera specification.

Table 4 shows a comparison between the two archi-

tectures with memory size numbers. Comparing row to

column raster scans, the scale generator and the his-

togram buffers have an increase of 1.8× in their sizes,

which is approximately the ratio between the width and

the height of a 1080HD frame. The SVM buffer size

doesn’t change because it stores the same SVM tem-

plate in both cases. The accumulator buffers on the

other hand have double the increase with 3.6×. The

difference is that the accumulator buffers change from

storing 8 columns of the partial dot product values in

the column raster scan architecture to storing 16 rows
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Table. 4 Comparison between the memory size in column
raster scan and row raster scan architectures. Memory size in
(Mbit).

Column scan Row scan
Scale Generator 0.136 0.243

Detectors
Histogram 0.289 0.520
Accumulator 0.095 0.340

SVM Memory 0.018 0.018
Total 0.538 1.121

Fig. 18 Layout of the object detector core (column scan
architecture).

in the row raster scan architecture. The numbers 8 and

16 are the detection window width and height respec-

tively. The overall on-chip memory size increase from

column to row raster scan architectures is about 2×.

7.4 Post-layout Results

The core layout of the column scan mode architecture

is shown in Fig. 18. Area and power breakdown for the

main computation blocks of the overall system is shown

in Fig. 19. The classification and the SVM buffer con-

sume about 50% of the system power. The remaining

50% of the power is divided between the feature extrac-

tion and the scale generation. Although the SVM buffer

has a relatively smaller size compared to the memo-

ries in the scale generation and the feature extraction

blocks, it consumes large power due to its high band-

width. Table 5 shows a breakdown of various memory

blocks size and bandwidth. Note that the SVM weights

buffer has a zero write bandwidth, assuming that the

template weights are loaded only at the beginning of

the detection process and never changed.

Table 6 shows a comparison between this work with

both scan modes and the ASIC implementation in [13].

Both designs can process 1080HD videos. To be able to

process 30 fps, the design in [13] has dual cores process-

ing only one scale, resulting in poor detection accuracy.

In this work, a 6.4× increase in throughput is required

relative to [13]: 3.2× to support multi-scale and 2× to

support 60 fps rather than 30 fps in [13]. Although this

work supports multi-scale detection, the size of the on-

chip memory is only 0.538 Mbit in the column raster

scan architecture. Doubling the memory size in the row

Fig. 19 Area and power breakdowns for the overall column
scan object detection system.

raster scan architecture still gives a comparable mem-

ory size. Comparing column and row raster scan ar-

chitectures, 30% increase in power is reported for row

raster scan, mainly because of the increase in on-chip

memory size.

8 Conclusion

Multi-scale support is essential for robust and accu-

rate detection. However, without any architectural op-

timization, the scale generation and processing would

result in a 14× power consumption increase, which is

a concern for energy-constrained applications. An effi-

cient architecture is presented in this work to generate

the image pyramid. Parallelism and voltage scaling re-

sult in a 3.4× power reduction. Image pre-processing

reduces the scales generation overhead, and results in

24% reduction in the overall system power. Two types

of image scan modes are presented, column and row

raster scans. Using 45nm SOI CMOS ASIC technology

at a supply voltage of 0.72 V, this design can process

1080HD video at 60 fps, with a total power consump-

tion of 45.3 mW and 58.5 mW for column and row

raster scan architectures respectively.
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