Energy and Area-Efficient Hardware for HEVC Inverse Transform

Mehul Tikekar, Chao-Tsung Huang, Vivienne Sze, Anantha Chandrakasan

Massachusetts Institute of Technology

Inverse Transform -H.264/AVC vs. HEVC

	H.264 /AVC	HEVC	Implementation Challenges
Transform units (TU) variety	4x4, 8x8	4x4, 8x8, 16x16, 32x32	Complex pipelining
Largest TU size	8x8	32x32	4x computation per pixel 16x memory requirements
Transform precision	5-bit	8-bit	2x multiplier logic
Transform types	IDCT	IDCT, IDST (4x4 only)	
Software run time	< 11%	12% - 23%	

Inverse Transform

Inverse Transform in Hardware

Hardware metrics and Contributions

- Energy per pixel
 - Depends on statistics of input data
 - Propose: data-gating in 1-D transform
- Area
 - Depends on throughput, transpose memory size
 - Propose: SRAM-based transpose memory
- Throughput
 - Target: 4K Ultra-HD 30fps = 400 Mpixel/cycle
 - 2 pixel/cycle at 200 MHz
 - Propose: zero-coefficient column skipping, register cache for transpose memory

1-D Transform Logic – Partial Butterfly Structure

Spurious Switching Activity for IDCT-4

Energy Savings by Data-gating

IDCT size	Energy Savings	
4-pt	37%	
8-pt	31%	
16-pt	9%	
32-pt	-12%	

3% - 26% savings over all quantization parameters and encoding configs in JCT-VC common test condition

- 16kb memory:
 - With register array: 125 kgates (a complete H.264/AVC decoder area)
 - SRAM-based design for low area cost

	1-port SRAM	Register array	
Transistors per bit	6	30	
Access flexibility	Low (address based)	Arbitrary access	
Throughput	1 entry per cycle	Entire array per cycle	
Read latency	1 cycle	0 cycle	

Interleaved Addressing for Transpose Memory

- 4 SRAM banks
- Each SRAM entry stores 1 pixel

8x8 Transform unit

Pipeline stall due to SRAM

Register cache to remove stall

Zero-column skipping – Motivation

Zero-column skipping

- Save 39% cycle count (input data dependent)
- Save 27% energy per pixel (reduced clocking, SRAM writes)

Implementation results

Designs	Logic area (kgate)	Energy per pixel (pJ/pixel)	Throughput (pixel/cycle)
Base design	118	18 – 32	2.0
Zero-column skip	122	13 – 30	2.3 – 3.5
Data-gating	123	18 – 25	2.0
Complete design	126	12 – 22	2.3 – 3.5

- 43% energy savings
- 50% throughput improvement
- 7% area increase
- Energy computed from post-layout simulation
- Energy and throughput measured under JCT-VC common test conditions1

Data-dependent Energy/pixel

Summary

- HEVC Inverse Transform requires 8x computation per pixel and 16x memory as H.264/AVC which increases energy/pixel and area
- This work proposes:
 - Data-gating to reduce energy/pixel by 17%
 - SRAM-based transpose memory to reduce area
 - Register cache for transpose memory to increase throughput
 - Zero-column skip to reduce energy/pixel by 27% and increase throughput by 39%