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ABSTRACT  

HEVC (High Efficiency Video Coding) is the next-generation video coding standard being jointly developed by the 
ITU-T VCEG and ISO/IEC MPEG JCT-VC team. In addition to the high coding efficiency, which is expected to provide 
50% more bit-rate reduction when compared to H.264/AVC, HEVC has built-in parallel processing tools to address bit-
rate, pixel-rate and motion estimation (ME) throughput requirements. This paper describes how CABAC, which is also 
used in H.264/AVC, has been redesigned for improved throughput, and how parallel merge/skip and tiles, which are new 
tools introduced for HEVC, enable high-throughput processing. CABAC has data dependencies which make it difficult 
to parallelize and thus limit its throughput. The prediction error/residual, represented as quantized transform coefficients, 
accounts for the majority of the CABAC workload. Various improvements have been made to the context selection and 
scans in transform coefficient coding that enable CABAC in HEVC to potentially achieve higher throughput and 
increased coding gains relative to H.264/AVC. The merge/skip mode is a coding efficiency enhancement tool in HEVC; 
the parallel merge/skip breaks dependency between the regular and merge/skip ME, which provides flexibility for high 
throughput and high efficiency HEVC encoder designs. For ultra high definition (UHD) video, such as 4kx2k and 8kx4k 
resolutions, low-latency and real-time processing may be beyond the capability of a single core codec. Tiles are an 
effective tool which enables pixel-rate balancing among the cores to achieve parallel processing with a throughput 
scalable implementation of multi-core UHD video codec. With the evenly divided tiles, a multi-core video codec can be 
realized by simply replicating single core codec and adding a tile boundary processing core on top of that. These tools 
illustrate that accounting for implementation cost when designing video coding algorithms can enable higher processing 
speed and reduce implementation cost, while still delivering high coding efficiency in the next generation video coding 
standard. 
Keywords: video coding, HEVC, parallel processing, throughput, CABAC, parallel merge/skip, tiles 
 

1. INTRODUCTION  

HEVC (High Efficiency Video Coding)[2] is the next generation video compression standard being jointly developed by 
the Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T WP3/16 and ISO/IEC JTC 1/SC 29/WG 11. In 
addition to 50% more bit-rate reduction than H.264/AVC, HEVC also enables high throughput processing by utilizing a 
variety of coding efficiency enhancement and parallel processing tools. High throughput processing is necessary in order 
to meet the growing demand for the higher resolutions (e.g. ultra high definition 4kx2k and 8kx4k) and frame rates (e.g. 
120 frames per second (fps)).  The degree of parallelism that can be achieved with architecture optimizations is often 
limited by the algorithm itself; thus it is important to account for the need for parallel processing during the design of the 
algorithms, and accordingly the design of the HEVC standard.  This paper focuses several key tools in HEVC that enable 
high throughput processing including high throughput CABAC, parallel merge/skip and tiles for parallel decoding. 

2. HIGH THROUGHPUT CABAC 

Context-Adaptive Binary Arithmetic Coding (CABAC) is a form of entropy coding that was introduced in H.264/AVC 
[3] and also used in HEVC [2].  While CABAC provides high coding efficiency, its tight data dependencies cause it to 
be a throughput bottleneck for H.264/AVC video codecs.  The throughput of CABAC is determined based on the binary 
symbols (bins) that can process per second.  Syntax elements of the transform coefficient data, which represent the 
residual of the prediction error, account for a significant portion of the bin workload.  For instance, under common 
conditions, transform coefficient data accounts for up to 90% of the total bins.  The transform coefficients also account 
for a significant portion of the total bits of a compressed video, and therefore impact the overall coding efficiency of the 
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video codec. Thus, transform coefficient coding with CABAC must be carefully designed in order to balance coding 
efficiency and throughput demands.   

Several tools were adopted into CABAC for HEVC to enable parallel processing of transform coefficients.  This section 
will discuss how CABAC transform coefficient coding has changed from H.264/AVC to HEVC. Section 2.1 provides an 
overview of CABAC entropy coding to explain the cause of the throughput bottleneck.  Section 2.2 describes the key 
steps in transform coefficient coding using CABAC.  Section 2.3 and Section 2.4 describes changes to transform 
coefficient coding that enable increased throughput and higher coding efficiency for HEVC.   

2.1 CABAC Throughput 

Entropy coding is a form of lossless compression used to minimize the number of bits required to represent syntax 
elements.  Arithmetic coding is a type of entropy coding that can achieve compression close to the entropy of a sequence 
by effectively mapping the symbols (i.e. syntax elements) to codewords with non-integer number of bits. In H.264/AVC, 
CABAC provides a 9 to 14% improvement over the Huffman-based CAVLC [4].   

CABAC involves three main functions as shown in Figure 1: binarization, context selection/modeling, and arithmetic 
coding. Binarization maps syntax element to binary symbols (bins). Context selection and modeling estimates the 
probability of the bins and arithmetic coding compresses the bins. 

CABAC is a highly serial process and a well known bottleneck in H.264/AVC video codec implementations. This makes 
it difficult to achieve the high throughput necessary for high resolution and frame-rate videos.  Furthermore, since high 
throughput can be traded-off for power savings using voltage scaling, the serial nature of CABAC limits the battery life 
for video codecs that reside on mobile devices.  Multiple feedback loops exist in the CABAC that make it highly serial 
as shown in Figure 1.  There are feedback loops in the range update for arithmetic coding (#1) and context (probability 
model) update (#2); however, the loops that make it most difficult to increase the CABAC throughput are due to the data 
dependencies for context selection (#3 and 4 in Figure 1). The context selection for a bin can depend on the value of a 
previously encoded/decoded bin.  This tight dependency makes parallelism difficult and costly to achieve, particularly at 
the decoder, if multiple bins are to be decoded at the same time.  If the context of a bin depends on the value of another 
bin being decoded in parallel, then speculative computations are required which increases area cost and critical path 
delay.   The amount of speculation grows exponentially with the number of parallel bins which limits the throughput that 
can be achieved.   For HEVC, improvements have been made to the context selection and coefficient scanning in order 
to reduce the amount of speculation required to process multiple bins in parallel. 
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Figure 1: The CABAC is composed of three key blocks: binarization, context selection and modeling and arithmetic coding. 
Feedback loops are highlighted with dashed lines. 
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2.2 Overview of Transform Coefficient Coding 

In video coding, both intra and inter prediction are used to reduce the amount of data that needs to be transmitted.  
Rather than sending the pixels, the prediction error is transmitted.  This prediction error is transformed from spatial to 
frequency domain and can be represented by a few quantized transform coefficients.  The method of signaling the value 
and the frequency position of these coefficients is referred to as transform coefficient coding.  

In CABAC, the positions of the coefficients are transmitted in the form of a significance map.  Specifically, the 
significance map indicates the location of the non-zero coefficients.  The coefficient level information is only transmitted 
for the coefficients with values greater than one, while the coefficient sign is transmitted for all non-zero coefficients.  
An example of transform coefficient coding in H.264/AVC is shown in Figure 2. 
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Figure 2: Example of transform coefficient coding used in H.264/AVC. 

2.3 Significance Map 

In H.264/AVC, the significance map is signaled by transmitting a significant_coeff_flag (SCF) for each position to 
indicate whether the coefficient is non-zero.  The positions are processed in an order based on a zig-zag scan.  After each 
non-zero SCF, an additional flag called last_significant_coeff_flag (LSCF) is immediately sent to indicate whether it is 
the last non-zero SCF; this prevents unnecessary SCF from being signaled. Different contexts are used depending on the 
position within the transform unit (TU), and whether the bin represents an SCF or LSCF.  Since SCF and LSCF are 
interleaved, the context selection of the current bin depends on the immediate preceding bin.  The dependency of LSCF 
on SCF results in a strong bin to bin dependency for context selection for significance map in the H.264/AVC.   

In the first version of the HEVC test model (HM-1.0), additional dependencies were introduced between SCF to improve 
coding efficiency [5]. The context selection for SCF can depend on the number of non-zero neighbors to give coding 
gains between 1.4 to 2.8% [6].  Specifically, the context of SCF depends on up to 10 neighbors as shown in Figure 3. 

 
Figure 3: Dependencies on neighbors in context selection of significant_coeff_flag in the first version of HEVC test model 
(HM-1.0). 

Using the neighboring coefficient introduces additional context selection dependencies on the previously processed bins, 
which makes it difficult process multiple bins per cycle [7].  Methods to minimize this dependency were explored 
including reducing the number of neighbors from 10 to 5 [8] and modifying the scan order of the coefficients from zig-
zag to diagonal [9].  These techniques significantly reduced context selection dependency, with minimal impact to 
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coding efficiency, and thus were adopted into various versions of HM.  In [10], it was shown that context selection 
dependencies between SCF within a 4x4 sub-block can be removed by using neighboring sub-blocks rather than 
neighboring coefficient positions for context selection of SCF as shown in Figure 4.  Specifically, the context selection 
of SCF in the current sub-block would depend on whether there were any non-zero coefficients in the bottom and right 
neighboring 4x4 sub-blocks.  Thus the context selection for all SCF within a 4x4 sub-block can be done in parallel. This 
reduced dependency on the previously processed bins, since neighboring sub-blocks are typically processed several 
cycles before the current sub-block, making it unlikely that there would be dependency between SCF bins processed in 
the same cycle.  

Check for 

non-zeros

Current 

sub-block

 
Figure 4: Context selection of significant_coeff_flag in current sub-block depends on whether right and bottom sub-blocks 
contain non-zero coefficients. 

As mentioned earlier, there are strong data dependencies between SCF and LSCF.  The concept of parallel context 
processing (PCP) is introduced in [11] to address this concern by reducing interleaving of SCF and LSCF.   PCP is used 
in [13] to avoid interleaving of SCF and LSCF altogether.  Specifically, the X, Y position of the last non-zero SCF 
(last_significant_coeff_x and last_significant_coeff_y) is sent rather than LSCF.  For instance, in the example of shown 
in Figure 2, last_significant_coeff_x equal to 3 and last_significant_coeff_y equal to 0 is sent rather than 
last_significant_coeff_flag.    

2.4 Level Coding 

In H.264/AVC, the coefficient level is composed of two parts.  The first 14 bins, generated with truncated unary 
binarization, are context coded (i.e. require context selection).  The remaining bins, generated by exp-golomb 
binarization, are bypass coded bins, which means that a fixed equal probability of 0.5 is assumed and thus do not require 
context selection.  After each coefficient level is signaled, the sign is signaled with one bypass bin.  It is important to 
note that bypass coded bins can be processed in parallel much easier than context coded bins.   

Parallel context processing (PCP) for coefficient level and sign was proposed in [12].  As with significance map, 
reducing the interleaving of bins coded with different contexts reduces the data dependencies for context selection.  If 
the context switches less from bin to bin, then less speculative computations are required. Thus the first bin of coefficient 
levels are grouped together and the sign bins are grouped together. 

PCP can be further leveraged with the new binarization scheme for coefficient levels introduced in [14].  The coefficient 
level is composed of three parts.  Only the first two bins (coeff_abs_level_greater1_flag and 
coeff_abs_level_greater2_flag) are context coded and the remaining bins, generated with Golomb-Rice binarization, are 
bypass coded (coeff_abs_level_remaining).   

In [15], PCP is applied to the second bin of the coefficient level.  As a result, all bypass coded bins are grouped together 
which maximizes the throughput advantages of bypass bins. coeff_abs_level_remaining across multiple coefficients are 
grouped together and sign bins are grouped together as shown in Figure 5. To reduce storage cost, the sign bins are 
signaled before coeff_abs_level_remaining bins. This reordering of data to enable parallel context processing has no 
impact on coding efficiency. 

 

Figure 5: Parallel Context Processing (PCP) in coefficient levels.  All bypass bins are grouped together to increase 
throughput. 
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Finally, in [16], the maximum number of coeff_abs_level_greater1_flag and coeff_abs_level_greater2_flag per 4x4 sub-
block are reduced from 16 to 8 and 1 respectively.  This reduces the number of context coded bins, and replaces them 
with bypass bins which can be processed at a higher throughput. 

2.5 Summary 

Methods such as parallel context processing and diagonal scans are used to reduce data dependencies in CABAC 
transform coefficient coding for HEVC.  An example of transform coefficient coding in HEVC is shown in Figure 6. 

 
Figure 6: Example of transform coefficient coding used in HEVC. 

Transform coefficient coding for HEVC has been carefully design to deliver higher throughput and higher coding 
efficiency as compared with H.264/AVC.  Dependencies for context selection of consecutive bins have been reduced for 
significance map and coefficient level in order to enable multiple bins to be processed in parallel.  In addition, the 
number of context coded bins in coefficient level has been significantly reduced.  At same time, new tools for improved 
coding efficiency (e.g. using neighbors for context selection of SCF) have been simplified to meet this requirement. 
Similar approaches of grouping bypass bins have also been applied to syntax elements beyond transform coefficients 
(e.g. intra prediction mode, motion vectors) to speed up CABAC and reduce hardware cost.   

3. PARALLEL MERGE/SKIP 

HEVC uses a different coded block structure as compare with H.264/AVC. Specifically, HEVC uses larger blocks 
compare to H.264/AVC.  The largest coding unit (LCU) is 64x64 pixels which is 16 times larger than the 16x16 pixel 
macroblock in H.264/AVC.  Using a large coding unit helps to improve coding efficiency, particularly for high 
resolutions where many pixels may share the same characteristic.  Furthermore, the largest coding unit can be divided 
into smaller coding units using a quad tree structure as shown in Figure 7.  A split flag is transmitted to signal whether a 
CU should be divided into four smaller CUs.  The smallest coding unit (SCU) allowed in HEVC is 8x8 pixels.  An 
additional feature in HEVC is that within an LCU, there can be a mixture of inter and intra coding units.  The coding 
units can be further divided into prediction units (PU).  The PU within a coding unit will undergo the same form of 
prediction (either all inter or all intra).  The PU sizes within a CU depend on whether the CU is inter or intra predicted. 

This section will discuss a way to parallelize an efficient method to code the motion data of an inter PU mode called 
merge mode.  First, Section 3.1 will describe how merge mode is performed.  Next, Section 3.2 will highlight the serial 
nature of merge more and its throughput impact at the encoder.  Section 3.3 will describe how merge is modified to 
enable parallel processing if multiple PU at the encoder.  Finally, Section 3.4 will describe the coding efficiency impact 
of doing parallel merge. 
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(a) CU Quad-Tree (b) CU divided into PU
 

Figure 7: Coded block structure in HEVC. Largest coding unit (LCU) is divided using a quad tree into smaller coding units 
(CU).  Each CU is divided into prediction units (PU).  

3.1 HEVC merge/skip mode 

Merge mode for inter-predicted PU is a coding efficiency tool introduced in HEVC [5]. Merge mode allows an inter-
predicted PU to inherit the same motion vector(s), prediction direction, and reference picture index(indices) from one of 
several candidate spatially neighboring PUs and temporally co-located PUs. Skip mode is a CU-level merge mode 
without any non-zero quantized transform coefficients for the CU.  Figure 8 illustrates candidate motion data positions 
for the merge mode as defined in the HEVC committee draft [2].  For the current PU, a merging candidate list is formed 
by considering merging candidates from the seven motion data positions depicted in Figure 8:  

• five spatially neighboring motion data positions  

o bottom-left (A1), top-right (B1), top-right corner(B0), bottom-left corner (A0), top-left corner (B2)  

• two temporally co-located motion data positions 

o bottom-right corner (H), center (CR) 

To derive motion data from a motion data position, the motion data is copied from the corresponding PU which contains 
(or covers) the motion data position.  

The spatial merging candidates, if available, are ordered as A1, B1, B0, A0 and B2 (as shown in Figure 8) in the merging 
candidate list (MCL). The merging candidate at position B2 is discarded if the merging candidates at positions A1, B1, 
B0 and A0 are all available. A spatial motion data position is treated as unavailable for the MCL derivation if the 
corresponding PU containing the motion data position is intra-coded, belongs to a different slice from the current PU or 
outside the picture boundaries.   

To choose the co-located temporal merging candidate, the co-located temporal motion data from the bottom-right motion 
data position (H in Figure 8, outside the co-located PU) is first checked and selected for the temporal merging candidate 
if available.  Otherwise, the co-located temporal motion data at the central motion data position (CR in Figure 8) is 
checked and selected for the temporal merging candidate if available. The temporal merging candidate is placed in the 
MCL after the spatial merging candidates. A temporal motion data position is treated as unavailable if the corresponding 
PU containing the temporal motion data position in the co-located reference picture is intra-coded or outside the picture 
boundaries.   
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Figure 8: Motion data candidate positions for the merging candidate list derivation in HEVC 
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Once the MCL is derived for a PU, an encoder performs merge estimation to determine which candidate in the list is best 
for merge mode of the PU in rate-distortion fashion, and signals the merging candidate index into the bitstream if merge 
mode is chosen. A decoder reconstructs motion data for the merge mode by performing the identical MCL derivation 
process and picks the relevant candidate from the list based on the merging candidate index signaled in the bitstream. 

3.2 Motion estimation throughput 

Merge mode is critical for improving coding efficiency. Compared to H.264/AVC [3] skip mode, which has single 
motion vector candidate and operates at 16x16 block level, the HEVC merge mode offers better coding efficiency as 
merging candidate are selected from a list of candidates and operate at a PU-level (down to size 8x4 or 4x8). However, 
the merge mode is highly sequential because the merging candidate list of the current PU cannot be derived until the 
motion data for the neighboring PUs become available. 

The sequential nature of merge mode can significantly reduce the throughput of motion estimation (ME) if the full 
coding efficiency potential of merge mode needs to be exploited. Figure 9 provides an example to illustrate the ME 
throughput difference between HEVC and H.264/AVC. In the example, it is assumed that ME is carried out at 16x16 
block level in parallel. In H.264/AVC, a 16x16 region of pixels contains a single macroblock, while in HEVC the same 
region can consist of multiple CUs.   In H.264/AVC the skip motion vector (MV) derivation and skip search are 
performed on a 16x16 block level and can be fully parallelized with the motion estimation in integer and sub-pel domain 
(referred to as regular ME) as show in the H.264/AVC timing diagram of Figure 9. In HEVC, because of inter-
dependency of the MCL derivation, only the MCL derivation and motion estimation with merge candidates (referred to 
as merge ME) of the first 8x8 CU (i.e. CU0) and 16x16 CU can run parallel with regular ME. The MCL derivation and 
merge ME for other CUs can only run sequentially after the regular ME is done, which costs additional cycles (see 
HEVC ME timing diagram in Figure 9). Therefore, to exploit full coding efficiency potential of HEVC, an HEVC 
encoder requires more cycles to perform MCL derivation and merge ME for the other CUs. 

It is important to note that ME is a significant bottleneck in the encoder.  As shown in Figure 9, if the ME cycle budget 
can only allow for regular ME without MCL derivation, the video quality will be compromised, as a HEVC encoder 
cannot perform merge ME for those PUs/CUs whose MCLs cannot be derived in parallel to the regular ME. Otherwise, 
the ME throughput cannot be met. 
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Figure 9: ME throughput comparison between H.264/AVC and HEVC at a 16x16 block level 

3.3 Parallel merge/skip  

To resolve the issued discussed above, HEVC provides a way of decoupling MCL derivation from regular ME 
[17][18][19]. An LCU is divided into a number of non-overlapped, square ME regions (MER). A MER may contain a 
number of CUs and PUs. From MER to MER, ME is carried out sequentially; within a MER, motion estimation for all 
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the CUs and PUs are carried out in parallel. To allow parallel merge estimation for all the CUs and PUs of a MER, those 
spatial merging candidates that are located inside the MER, and are not available due to the parallel ME constraint, are 
dropped from the MCL derivation of the current CU/PU.   A spatial merging candidate is unavailable if it is located in 
the same MER as the current PU. The parallel merge level, which indicates the size of the MER (i.e. degree of allowed 
parallelism) is signaled in picture parameter set.  

It is straightforward to check whether the current PU and a neighboring PU containing the spatial merging candidate 
belongs to a same MER or not. Let log2_parallel_merge_level_minus2 be signaled parallel merge level in the range of 0 
to 4, (xP, yP) be location of a spatial merging candidate and (xN, yN) be coordinate of the top-left corner sample of the 
current PU (see Figure 10 and Table 1).  The spatial merging candidate is determined to be unavailable and dropped 
from the MCL derivation process of the current PU if the following condition is satisfied:    

{ 2)+s2level_minulel_merge_log2_paral(  2)+s2level_minulel_merge_log2_paral(
2)+s2level_minulel_merge_log2_paral( 2)+s2level_minulel_merge_log2_paral(

>>==>>
>>==>>

xNxP
yNyP  

 
Figure 10: Illustration of the current PU and its spatial neighboring merging candidates    

Table 1 (xN, yN) determination for spatial merging candidates 

Spatial merging candidate (see Figure 8) Position  (xN              ,  yN) 
A0 Left-down (xP - 1          , yP + nPSH -1) 
A1 Left bottom (xP – 1         ,  yP + nPSH) 
B0 Above Right (xP+nPSW   ,  yP – 1) 
B1 Above (xP+nPSW-1,  yP – 1) 
B2 Above left (xP – 1          ,  yP – 1) 

* nPSW x nPSH is the current PU size  
 

With the parallel merge/skip, the coding efficiency can be improved. As shown in Figure 11, without parallel merge/skip 
a HEVC encoder would need to drop merge estimation for those CUs and PUs whose MCLs cannot be derived when 
regular ME is taking place, which inevitably decreases video quality. With the parallel merge/skip, an encoder has the 
ability to decouple MCL derivation from the regular ME, and enable regular ME and merge ME for all the PUs/CUs of a 
MER, which leads to best possible quality for parallel ME environment.  
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Figure 11: HEVC ME time diagram with and without parallel merge/skip   

3.4  Coding Efficiency Impact 

Experiments were carried out for typical parallel merge (ME) level of 16x16 and 32x32 to quantify the coding efficiency 
benefit of parallel merge/skip. The HEVC test model HM-7.0 software was used and common test conditions were 
followed [1]. For the anchor, HM-7.0 was modified to emulate ME with a limited cycle budget by dropping merge 
estimation for those CUs and PUs whose MCLs are not available (see bottom part of Figure 11).  Simulation of HM-7.0 
with log2_parallel_merge_level_minus2 set to 2 (MER = 16x16) and 3 (MER = 32x32) were performed. As shown in 
Table 2, the parallel merge/skip provides significant coding gains for all the configurations. 

Table 2: Average BD-rate savings for parallel merge level of 16x16 and 32x32 

Parallel 
merge level 

RA-Main 
(%)  

LB-Main 
(%)  

LP-Main  
(%)  

RA-HE10  
(%)  

LB-H10 
(%)  

LP-H10  
(%)  

16x16 -1.1 -1.7 -1.9 -1.1 -1.7 -1.8 
32x32 -2.7 -4.0 -3.7 -2.7 -3.8 -3.6 

4. PARALLEL DECODING PROCESSING 

4.1 Multi-core requirements 

Video resolutions have been increasing rapidly over the past few years. As video resolution move to Ultra HD (e.g. 
4kx2k, 8kx4k), one of the challenges facing the real-time video applications today is that a single core video decoder 
may find it difficult to handle Ultra HD resolution video in real-time. For years, the increase of clock-rates for CPUs has 
slowed down due to power limitations, despite process scaling [20]; multi-core architecture is widely used to increase 
performance while keeping cost and power consumption in check. The HEVC has adopted several parallel processing 
tools into the standard to support parallel processing on multi-core platforms. These tools include Tiles [21], Wavefront 
Parallel Processing (WPP) [22] and Entropy Slices (ES) [23]. 
 
For parallel decoding on multiple core platforms, the following design requirements should be considered: 

• Pixel-rate balancing: the selected parallel processing tool should be able to divide a picture into sub-pictures of 
equal size (in unit of largest coding units, LCUs) so that pixel-rate balancing can be guaranteed when individual 
cores are processing sub-pictures in parallel [24]. 

• Line buffers can expensive in terms of area cost and memory bandwidth particularly at higher resolutions. It 
would be desirable for the selected parallel processing tool to be able to divide a picture into sub-pictures 
vertically to minimize line buffer size.  In other words, the line buffer size per core can be kept constant.  
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• Cross-core communication can be challenging in certain multi-core solutions. For these solutions, it is desirable 
for the selected parallel processing tool to have minimal cross-core data communication. 

• Design validation is a significant part of design cost. The selected parallel processing tool should be able to 
minimize the design validation efforts for multi-core solutions once the single core is designed and validated.  
In other words, minimal changes to single core to support a multi-core solution are desirable.   

• The selected parallel processing tool should minimize quality degradation by minimizing size of sub-picture 
boundaries.  
 

Among the available parallel processing tools, tiles can address the pixel rate balancing issues on multi-core platforms 
while meeting most of the requirements listed above.  

4.2 Overview of Tiles 

Many applications and implementations require the partitioning of a picture. Typical examples include network 
maximum transmission unit (MTU) size matching [25], high-level encoder/decoder parallel processing [26]. Partitioning 
a picture into partitions such as slices as part of the encoding process is known to negatively impact coding efficiency 
particularly on partitioning boundaries when the slices are designed to be independently decodable. Tiles, proposed in 
[21], provides parallel encoder/decoding processing functionality while minimizing the coding efficiency loss resulted 
from picture partitioning. 
Tiles include vertical and horizontal boundaries that partition a picture into columns and rows respectively. These 
boundaries break coding dependencies (e.g., dependencies associated with intra prediction, motion vector prediction and 
parsing) in the same way as slice boundaries. The rectangular regions resulting from the intersecting column and row 
boundaries are called Tiles. Each tile contains an integer number of LCUs. LCUs are processed in raster scan order 
within each tile and the tiles themselves are processed in raster scan order within the picture (see Figure 12). Tiles allow 
the column and row boundaries to be specified with and without uniform spacing.  

 
Figure 12: An example of Tiles partitioning using three columns and three rows. 

 

4.3 Tiles for parallel decoding 

Tiles are advantageous for parallel decoding purpose when compared to slices or WPPs. In the example shown in Figure 
13, a picture is divided into 4 sub-pictures of equal size. With tiles, the picture can be divided into 2x2 sub-pictures. 
However, with regular slices for example, the picture would need to be divided into 1x4 sub-pictures. Sub-picture 
partitioning using tiles are apparently advantageous in the follows aspects: 1) sub-picture width is only half of picture 
width, which cuts the line buffer size by half.  2) fewer number of sub-picture boundaries in terms of pixels (one vertical 
and horizontal vs. three horizontal sub-picture boundaries as shown in Figure 13) leads to better quality; for instance, for 
1080 HD (1920x1088), tiles would result in 3008 pixel boundaries versus 5760 pixel boundaries for slices. 3) tiles are 
independent which minimizes cross-core communications; only reference picture data is shared among cores. 4) cores 
can be simply replicated to build multi-core solutions without need of additional design validation efforts to verify cross-
core interconnections.  

Proc. of SPIE Vol. 8499  849910-10

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 10/23/2014 Terms of Use: http://spiedl.org/terms



 
 

 

 

Sub-pic0

Sub-pic2

Sub-pic1

Sub-pic3

Sub-pic0

Sub-pic2

Sub-pic1

Sub-pic3

Sub-picture boundaries

Sub-picture partitioning using tiles Sub-picture partitioning using slices
 

 Figure 13: Sub-picture partitioning 

To make tiles work for parallel decoding processing on multi-core platform, several restrictions would need to be 
imposed on the bitstream so that a decoder can rely on built-in parallel processing features to dispatch the bitstream to 
multi-core simultaneously for parallel decoding. Those restrictions are: 

1. It should be mandated to divide an Ultra-HD picture into a number of uniformly spaced tiles so that pixel-rate 
balancing is guaranteed for multiple core platforms. Tile widths should not exceed single core line buffer width 
partitioning so that the single-core decoder line buffer does not need to be increased when single cores are 
replicated to build up multi-core decoder 

2. Tiles should be independent for minimizing cross-core data communication. Only de-blocking filter, Sample 
Adaptive Offset (SAO), Adaptive Loop Filter (ALF) can cross tile boundaries. 

3. Slices, entropy slices and WPPs, if present, should be contained within tiles and cannot cross tile boundaries  

4. Tile sub-stream entries in bitstream are signaled in at picture level, so that a multi-core decoder can dispatch 
sub-streams to cores in parallel. 

With uniformly spaced tiles and restrictions above, HEVC potentially enables a cost-effective way of building multi-
core platforms for supporting Ultra-HD real-time decoding. As shown in Figure 14, a 8kx4k at 30 fps decoder can be 
built by simply replicating the 4kx2k at 30 fps single core decoder four times, and adding a sub-picture boundary 
processing core to perform e.g. de-blocking filter, Sample Adaptive Offset (SAO), Adaptive Loop Filter (ALF) along tile 
boundaries.   

Single core
decoder1 

(slices, ES,
WPP)

Single core
decoder3 

(slices, ES,
WPP)

Single core
decoder2 

(slices, ES,
WPP)

Single core
decoder4 

(slices, ES,
WPP)

Sub-picture boundary
processing core

Single core
decoder 

(slices, ES,
WPP)

Up to e.g. 4kx2k at 30fps

Up to e.g. 8kx4k at 30fps
 

Figure 14: Building a multi-core decoder by replicating single core decoders  

5. CONCLUSIONS 

Parallelism and high throughput processing continue to be of critical importance as the demand for larger frame rates 
and resolutions continues to grow. These requirements were considered during the development of the latest video 
coding standard HEVC.  This paper discusses various methods in which the throughput of the video codec has been 
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improved including at the low level in the CABAC entropy coder, at the high level with tiles, and at the encoder with 
parallel merge/skip.  By accounting for these implementation challenges, HEVC can deliver both the coding efficiency 
and the throughput required to support the high bit-rates and pixel-rate of future video content.  
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