
ENERGY AND AREA-EFFICIENT HARDWARE IMPLEMENTATION OF HEVC INVERSE
TRANSFORM AND DEQUANTIZATION

Mehul Tikekar1, Chao-Tsung Huang2, Vivienne Sze1, Anantha Chandrakasan1

1Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2National Tsing Hua University, Hsinchu 30013, Taiwan

ABSTRACT

High Efficiency Video Coding (HEVC) inverse transform
for residual coding uses 2-D 4×4 to 32×32 transforms with
higher precision as compared to H.264/AVC’s 4×4 and 8×8
transforms resulting in an increased hardware complexity. In
this paper, an energy and area-efficient VLSI architecture of
an HEVC-compliant inverse transform and dequantization
engine is presented. We implement a pipelining scheme to
process all transform sizes at a minimum throughput of 2
pixel/cycle with zero-column skipping for improved through-
put. We use data-gating in the 1-D Inverse Discrete Cosine
Transform engine to improve energy-efficiency for smaller
transform sizes. A high-density SRAM-based transpose
memory is used for an area-efficient design. This design
supports decoding of 4K Ultra-HD (3840×2160) video at
30 frame/sec. The inverse transform engine takes 98.1 kgate
logic, 16.4 kbit SRAM and 10.82 pJ/pixel while the dequan-
tization engine takes 27.7 kgate logic, 8.2 kbit SRAM and
1.10 pJ/pixel in 40 nm CMOS technology. Although larger
transforms require more computation per coefficient, they
typically contain a smaller proportion of non-zero coeffi-
cients. Due to this trade-off, larger transforms can be more
energy-efficient.

Index Terms— HEVC, Inverse Discrete Cosine Trans-
form, Transpose Memory, Data Gating

1. INTRODUCTION

High-Efficiency Video Coding (HEVC) achieves a 50% re-
duction in bit-rate over H.264/AVC at the same visual qual-
ity. A key feature in HEVC is the introduction of large
16×16 and 32×32 inverse discrete cosine transforms (ID-
CTs), a new 4×4 inverse discrete sine transform (IDST)
and high-precision 4×4 and 8×8 IDCTs. The large trans-
forms contribute to 6.7% - 10.1% bit-rate reduction for 1080p
(1920×1080) and larger video sequences, and the increased
precision in smaller transforms contribute 0.3% - 1.2% [1].

The authors would like to thank Texas Instruments for supporting the
project and TSMC University Shuttle Program for chip fabrication. Mehul
Tikekar was supported by the NSF.

These new features of HEVC raises several challenges for
hardware implementations:

1. HEVC uses Transform Units (TUs) of size 4×4, 8×8,
16×16, and 32×32 pixels. This variety of TU sizes
complicates the design of control logic as TUs of dif-
ferent sizes take different number of cycles for process-
ing.

2. Like H.264/AVC, the 2-D transforms in HEVC are sep-
arable into 1-D transforms along the columns and rows.
The N -pt 1-D IDCT used in an N ×N 2-D IDCT can
be viewed as the product of a N ×N transform matrix
with N × 1 input coefficients. This requires N mul-
tiplications per coefficient. Hence, the largest IDCT in
HEVC (32×32) takes 4× the number of multiplications
as the largest IDCT in H.264/AVC (8×8). Further, the
increased precision in HEVC transforms doubles the
cost of each multiplication. Combined together, HEVC
transform logic has 8× the computational complexity
of H.264/AVC which affects both area and energy.

3. An intermediate memory is needed to store the TU be-
tween the column and row transforms operation. This
memory must perform a transposition i.e. columns are
written to it and rows are read out. Previous designs for
H.264/AVC used register arrays due to the small TU
sizes. These do not scale very well to the higher TU
sizes of HEVC and one must look to denser memories
such as SRAM to achieve an area-efficient implemen-
tation. However, the higher density of SRAMs comes
at the cost of lesser memory throughput and lesser flex-
ibility in read-write patterns.

In this paper, we propose the following techniques to im-
prove the throughput, energy and area of an HEVC inverse
transform engine:

1. A pipelining scheme is devised to handle the variety of
TU sizes. A high throughput is achieved using zero-
column skipping and bypassing residues of smaller
TUs.

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 20142100

2. To address the computational complexity of the HEVC
transform logic, an Multiple Constant Multiplication
(MCM) [2] based method had previously been pro-
posed where the area depends only on the number of
unique constants in the IDCT matrices [3]. In this
work, the design is extended using data-gating to im-
prove energy-efficiency as well.

3. An SRAM-based transpose memory is proposed that
provides the required throughput inspite of SRAM lim-
itations mentioned previously using parallel SRAM
banks and a register-based cache.

These techniques are used to implement an HEVC in-
verse transform engine with a worst-case throughput of 2
pixel/cycle. At 200 MHz, this is sufficient for decoding
4K Ultra-HD video at 30 frames/sec (2 × 200 × 106 >
3840 × 2160 × 1.5 × 30). A dequantization engine support-
ing all HEVC scaling list types is briefly described and area
and energy results for the complete design in 40 nm CMOS
technology are presented finally.

2. HIGH-THROUGHPUT PIPELINING SCHEME
FOR ALL TU SIZES

In general, two high-level architectures are possible for a 2
pixel/cycle inverse transform [4]. The first one, shown in Fig.
1(a) uses separate blocks for row and column transforms.
Each one has a throughput of 2 pixel/cycle and operates
concurrently. The dependency between the row and column
transforms (all columns of the TU must be processed before
the row transform) means that the two must process different
TUs concurrently. The two TUs could take different number
of cycles thus causing pipeline stalls. For example, if a 4×4
TU follows a 8×8 TU, the column transform will stall after
processing the 4×4 TU as it waits for the row transform to
finish the 8×8 TU.

With these considerations, the second architecture, shown
in Fig. 1(b) is preferred. This uses a single transform block
capable of 4 pixel/cycle for both row and column transform.
The block works on a single TU at a time, processing all the
columns first and then the rows. Hence, the transpose memory
needs to hold only one TU and can be implemented with a
single-port SRAM since row and column transforms do not
occur concurrently.

The complete architecture of the inverse transform and
dequantization engine is shown in Fig. 2. The partial 1-D
transform block includes the 4 pixel/cycle IDCT and IDST
blocks. The transform coefficients and TU information (TU
size, quantization parameter, luma/chroma) are read from the
“Coeffs” and “Info” FIFOs respectively and the output is writ-
ten to the “Residue” FIFO . Single-element FIFOs are used
for pipelining.

The design includes a separate 4-element 4 pixel/element
FIFO (marked “Residue 4×4” in Fig. 2) to store residues for

Column
Transform

Transpose
Memory

Row
Transform

Dequant-
ization ResidueCoeffs

2 2 2 22

(a) Separate row and column transforms

Shared 1-D
Transform

Transpose
Memory

Dequant-
ization

Residue
Coeffs

row/column
select

4 4

4

4

(b) Shared transform block

Fig. 1: Possible high-level architectures for inverse transform
(bus-widths are in coefficients/residue pixels). To achieve an
overall 2 pixel/cycle throughput, the shared 1-D transform
block must be designed for 4 pixel/cycle.

1
Dequant-
ization4

Coeffs

1
4

Partial 1-D
Inverse

Transform

Transpose
Memory

1
4

Residue

4

Row cache

32

44

4

32

1

Accumulator

Row Transform

Column Transform

Registers

Logic

SRAM

4
4

first row

TU4x4

32

1

1

Info

Control row/column

TU4x4

qP

Residue 4x4

Residue
8x8 - 32x32

Fig. 2: Architecture of inverse transform based on Fig. 1(b)

4×4 TUs. This is to avoid a stall when a 4×4 TU immediately
follows a 32×32 TU. After the last row of the 32×32 TU
is computed, it takes 8 cycles to write it out. During those
cycles, the partial 1-D transform block computes the column
transforms of the 4×4 TU and is ready to write the first row
out after 4 cycles itself. To avoid stalling the pipeline while
the last row of the 32×32 TU is being written out, the residues
of the 4×4 TU are saved in the separate residue FIFO.

The proposed design implements zero-column skipping
based on IDCT pruning [5] in which the 1-D transform is
skipped for columns that have all zero coefficients. This re-
duces cycle-count by 27% to 66%. TUs with larger sizes
and higher quantization benefit more from zero-column skip-
ping since they have a higher proportion of all-zero columns.
Zero-column skipping also improves energy/pixel by avoid-
ing any switching to zero. For example, when processing
2000 TUs (173360 pixels with a mixture of all TU sizes) from
the ParkScene test sequence at QP 32, zero-column skipping
reduces the cycle count by 38% and energy/pixel by 29%.

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 20142101

4×4
8×8

matrix mult. 16×16
matrix mult.

Partial IDCT output
IDCT32

IDCT16

IDCT8

IDCT4

+

+

+

Partial IDCT input

4

8

32

16

4

8

16

+

IDCT output

32x Accumulators

32

Fig. 3: Shared 4-pt to 32-pt 1-D IDCT from Fig. 2. Dotted
lines denote the path which is data-gated to reduce spurious
switching when computing smaller transforms.

TU Energy without Energy with Energy
size gating gating savings

(pJ/pixel) (pJ/pixel)
4×4 17.8 11.2 37%
8×8 32.4 22.2 31%

16×16 42.1 38.1 9%
32×32 50.9 57.1 -12%

Table 1: Power reduction in inverse transform engine using
data-gating

3. ENERGY-EFFICIENT 1-D INVERSE DISCRETE
COSINE TRANSFORM

Our 1-D IDCT is based on the design from [6] which im-
plements a single shared 4 pixel/cycle transform for 4-pt
to 32-pt IDCT and uses multiple constant multiplication
(MCM) for an area-efficient implementation. However, the
sharing causes some spurious switching activity that reduces
the power-efficiency, especially for smaller transforms. For
example, when computing a 4-pt IDCT, due to the shared
architecture shown in Fig. 3, all 8 outputs of IDCT8 toggle
even though only the first 4 outputs need to change. This
extra switching cascades down to the outputs of the larger
transforms through the subtraction blocks. In this design, all
the subtraction blocks are data-gated (by setting their outputs
to 0) so that only the necessary outputs have any switching ac-
tivity for smaller transforms. Similarly, the 32 accumulators
are explicitly clock-gated for smaller transforms to reduce
clock switching power.

The benefits of gating are seen in Table 1 which com-
pares the post-layout power for different transform sizes with
and without gating. The gating circuit adds an overhead of
4.7 kgate (4%) to the logic area while reducing energy/pixel
by 17%. As expected, the smaller transforms benefit more
from data-gating.

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0

0 0 0 0 1 1 1 0

8 8 8 8 9 9 9 0

16

0

0

1

9

0

0

0

0

0

0

2

10

24

32

016

24

32

016

24

32

016

24

32

017

25

33

017

25

33

017

25

33

017

25

33

018

26

34

32
 p

ix
el

s

32 pixels

0

0

0

Bank 0

Bank 1

Bank 2

Bank 3

0

0

7

15

023

31

39

120 120 120120 121121 121121 122 127

Fig. 4: Mapping a 32×32 TU to 4 SRAM banks for transpose
operation. The color of each pixel denotes the bank and the
number denotes the bank address.

4. HIGH-DENSITY AND HIGH-THROUGHPUT
TRANSPOSE MEMORY

The transform block uses a 16-bit precision input for both row
and column transforms. The transpose memory must be sized
for 32×32 TU which means a total size of 16 × 32 × 32 =
16.4 kbits. In comparison, H.264/AVC decoder designs re-
quire a much smaller transpose memory: 16×8×8 = 1 kbits.
A 16.4 kbit memory with the read circuit for transpose opera-
tion is prohibitively large (125 kgate) when implemented with
registers and multiplexers. Hence, an SRAM implementation
is needed. The main disadvantage of the SRAM is that it is
less flexible than registers. A register array allows reading
and writing to arbitrary number of bits at arbitrary locations
- ideal for the transpose operation. In comparison, a single-
port SRAM can access only one entry at a time. Multi-port
SRAMs can access multiple entries simultaneously but they
incur significant area penalties.

We implement the 4 pixel/cycle 32×32 transpose memory
as 4 single-port banks of 256 entries. The pixels in a 32×32
TU are mapped to locations in the 4 banks as shown in Fig. 4.
By ensuring that 4 adjacent pixels in any row or column are
stored in different SRAM banks, it is possible to write along
columns and read along rows by supplying different addresses
to the 4 banks.

After a 32-pt column transform is computed, it takes 8
cycles for the result to be written to the transpose SRAM,
during which time the transform block processes the next col-
umn. This is shown in cycles 0−7 in Fig. 5(a) where result of
column 30 is written to the SRAM while the transform block
works on column 31. However, when the last column is pro-
cessed, the transform block must wait for it to be written to
the SRAM before it can begin processing the row. This re-
sults in a delay of 9 cycles for 32×32 TU. In general, for an
N × N TU, this delay is equal to N/4 + 1 cycles which is
1.75% (for N = 32) to 25% (for N = 4) of the total N2/2

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 20142102

0 4 8 12 16 20

Transform

Transpose
SRAM

Column 31

Write Column 31 Read Row 0

Row 0Empty cycles

Write Column 30

24

Read
latency

Cycle

(a) Pipeline stall due to transpose SRAM delay for 32×32 TU

0 4 8 12 16 20

Transform

Transpose
SRAM

Column 31

Write Column 31 Read Row 1

Row 0

Write Column 30

24
Cycle

Row 1

Row cache
Read Row 0 R

W W

(b) Row caching to avoid stall

Fig. 5: Eliminating stall cycles in SRAM transpose memory
with a register-based row cache

cycles. This delay is avoided through the use of a row cache
that stores the first N + 4 pixels in registers. This enables
full concurrency as shown in Fig. 5(b). The first pixel in each
column is saved to the row cache so that the first row can be
read from the cache while the last column is being stored in
the SRAM.

This transpose memory design using SRAM scales very
well for lower throughputs. A p pixel/cycle transpose mem-
ory would need p banks each with 1024/p entries. For higher
throughputs, more banks are needed with fewer entries in
each bank. Such short SRAMs have an area overhead of
sense-amplifiers, row decoders, etc., and a register-based
transpose memory [7], [8] is more efficient.

5. DEQUANTIZATION ENGINE

This work includes a dequantization engine that supports all
three scaling list types in HEVC - no scaling list, default scal-
ing list and custom lists. Custom lists are stored in an 8 kbit
single-port SRAM while the default scaling list is stored in a
separate ROM to avoid unnecessary power consumption from
SRAM accesses for default scaling.

6. RESULTS

Breakdown of the logic area at 200 MHz clock frequency in
TSMC 40 nm technology is given in Table 2. The total area
is 128 kgate of logic and 24.6 kbits of SRAM. Table 2 also
shows the energy/pixel as estimated from post-layout simula-
tion for processing 2000 TUs (173360 pixels with a mixture
of all TU sizes) from the ParkScene test sequence at QP 32.

The switching power in a digital circuit depends on the
amount of computation as well as the statistics of the data
being computed upon. Larger TU sizes require much more
computation per pixel which increases energy/pixel. How-
ever, larger TUs are also better at compressing video data. As
a result, they typically have fewer non-zero coefficients (spar-
sity) which results in lower switching activity. This effect is

Module Logic area SRAM Energy
(kgate) (kbit) (pJ/pixel)

Partial 1-D transform 65.3 0 4.88
Transpose Memory 5.2 16.4 2.31
Row cache 5.2 0 0.22
Accumulator 13.4 0 1.84
FIFOs and control 9.0 0 1.57
Dequantization 27.7 8.2 1.10
Total 125.8 24.6 11.92

Table 2: Area and energy breakdown for complete design

TU size Sparsity Energy Sparsity Energy
of TUs (pJ/pixel) of TUs (pJ/pixel)

4×4 10% 11.2 15.0% 9.7
8×8 10% 22.2 4.5% 11.4
16×16 10% 38.1 2.4% 12.6
32×32 10% 57.1 0.5% 12.2

Table 3: Energy for different TU sizes with fixed and variable
sparsities.

seen in Table 3 where the energy/pixel with a fixed 10% spar-
sity and with a variable sparsity obtained from actual video
are compared.

This data suggests that, from a power perspective, the in-
creased computation in larger TU sizes can be offset by the
fewer number of non-zero coefficients.

7. CONCLUSION

In this paper, we presented the hardware design of an HEVC-
compliant inverse transform engine capable of processing
4K Ultra-HD 30 frames/sec video in 40 nm technology. A
pipelining scheme is developed to manage all TU sizes in
HEVC at a worst-case throughput of 2 pixel/cycle. Zero-
column skipping reduces cycle-count by 27%-66% over the
worst case. The design of a transpose memory using a com-
bination of SRAM for high density and registers for high
throughput is explained. Finally, a dequantization engine for
all scaling list types is briefly described. This design takes
126 kgates of logic and and consumes 7.8 mW of power (or
11.9 pJ/pixel). Data and explicit clock-gating improves the
energy efficiency of the shared transform logic. The proposed
techniques are summarized in Table 4.

Designs Logic area Energy Throughput
(kgates) (pJ/pixel) (pixel/cycle)

Base design [6] 118.5 20.94 2.00
Gating 123.1 17.62 2.00
Zero-column skip 121.6 14.79 3.26
Complete design 125.8 11.92 3.26

Table 4: Summary of proposed techniques

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 20142103

8. REFERENCES

[1] M. Budagavi, A. Fuldseth, G. Bjontegaard, V. Sze, and
M. Sadafale, “Core Transform Design for the High Effi-
ciency Video Coding (HEVC) Standard,” Selected Topics
in Signal Processing, IEEE Journal of, vol. 7, no. 6, pp.
1029–1041, 2013.

[2] M. Potkonjak, M.B. Srivastava, and A. Chandrakasan,
“Efficient Substitution of Multiple Constant Multiplica-
tions by Shifts and Additions using Iterative Pairwise
Matching,” in Design Automation, 1994. 31st Conference
on, june 1994, pp. 189 – 194.

[3] M. Tikekar, C.-T. Huang, C. Juvekar, and Chandrakasan
A., “JCTVC-G265: Core transform property for practical
throughput hardware design,” Joint Collaborative Team
on Video Coding (JCT-VC), 2011.

[4] D. F. Finchelstein, Low-power Techniques for Video De-
coding, Thesis, Massachusetts Institute of Technology,
2009.

[5] M. Budagavi and V. Sze, “IDCT pruning and scan depen-
dent transform order,” Joint Collaborative Team on Video
Coding (JCT-VC), 2011.

[6] M. Tikekar, Chao-Tsung Huang, C. Juvekar, V. Sze, and
A.P. Chandrakasan, “A 249-Mpixel/s HEVC Video-
Decoder Chip for 4K Ultra-HD Applications,” Solid-
State Circuits, IEEE Journal of, vol. 49, no. 1, pp. 61–72,
2014.

[7] T. Xanthopoulos, Low Power Data-Dependent Transform
Video and Still Image Coding, Thesis, Massachusetts In-
stitute of Technology, 1999.

[8] P.K. Meher, S.Y. Park, B.K. Mohanty, K.S. Lim, and
C. Yeo, “Efficient Integer DCT Architectures for HEVC,”
Circuits and Systems for Video Technology, IEEE Trans-
actions on, vol. 24, no. 1, pp. 168–178, Jan 2014.

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 20142104

