
Parallelization of CABAC Transform Coefficient
Coding for HEVC

Vivienne Sze, Madhukar Budagavi
Texas Instruments

Video, Imaging and Vision Lab
Systems and Applications R&D Center

{sze, madhukar}@ti.com

Abstract—Data dependencies in CABAC make it difficult to
parallelize and thus limits its throughput. The majority of the
bins processed by the CABAC are used to represent the prediction
error/residual in terms of quantized transform coefficients. This
paper provides an overview of the various improvements to
context selection and scans in transform coefficient coding that
enable HEVC to potentially achieve higher throughput relative to
AVC/H.264. Specifically, it describes changes that remove data
dependencies in significance map and coefficient level coding.
Proposed and adopted techniques up to HM-4.0 are discussed.
This work illustrates that accounting for implementation cost
when designing video coding algorithms can result in a design
that can enable higher processing speed and reduce hardware
cost, while still delivering high coding efficiency.

I. INTRODUCTION

High Efficiency Video Coding (HEVC) is currently being
developed by the Joint Collaborative Team for Video Coding
(JCT-VC). It is expected to deliver up to a 50% higher coding
efficiency compared to its predecessor AVC/H.264. In order
to improve coding efficiency, HEVC uses larger block and
transform sizes, additional loops filters, and highly adaptive
entropy coding. While high coding efficiency is important
for reducing the transmission and storage cost of video,
processing speed and area cost also need to be considered in
the development of next generation video coding in order to
handle the increasing demand for higher resolution and frame
rates.

Context-Adaptive Binary Arithmetic Coding (CABAC) [1]
is a form of entropy coding used in AVC/H.264 [2] and also
in HEVC [3]. While CABAC provides high coding efficiency,
its data dependencies cause it to be a throughput bottleneck
for AVC/H.264 video codecs [4]. The throughput of CABAC
is determined based on the binary symbols (bins) that it
can process per second. Syntax elements of the transform
coefficient data, which represent the residual of the prediction
error, accounts for a significant portion of the bin workload.
For instance, under common conditions [5], with quantization
parameter (QP) ranging from 22 to 37, transform coefficient
data accounts for 60% to 90% of the total bins for All Intra
sequences, 30% to 80% of the total bins for Low Delay,
and 20% to 90% of the total bins for Random Access. At
the same time, the transform coefficients also account for a
significant portion of the total bits of a compressed video, and
as a result the compression of transform coefficients signifi-

cantly impacts the overall coding efficiency. Thus, transform
coefficient coding with CABAC must be carefully designed in
order to balance coding efficiency and throughput demands.
Accordingly, as part of the HEVC standardization process,
a core experiment on coefficient scanning and coding was
established to investigate tools related to transform coefficient
coding [6].

This paper focuses on tools that enable parallel processing
of transform coefficients with CABAC for HEVC. It will
discuss how CABAC transform coefficient coding has evolved
from AVC/H.264 to the HM-4.0 version of the HEVC test
model [3], [7] as well as describe additional improvements un-
der consideration for HEVC. Section II provides an overview
of CABAC entropy coding to explain the cause of the through-
put bottleneck. Section III describes the key steps in transform
coefficient coding using CABAC. Section IV and Section V
describes changes to transform coefficient coding that enable
increased throughput and higher coding efficiency for HEVC.

II. CABAC THROUGHPUT

Entropy coding is a form of lossless compression used at the
last stage of video encoding (and first stage of video decoding),
after the video has been reduced to a series of syntax elements.
Arithmetic coding is a type of entropy coding that can achieve
compression close to the entropy of a sequence by effectively
mapping the symbols (i.e. syntax elements) to codewords with
non-integer number of bits. In H.264/AVC, CABAC provides a
9 to 14% improvement over the Huffman-based CAVLC [1].
In HM-3.0, CABAC provides a 5 to 9% improvement over
CAVLC [8].

CABAC involves three main functions: binarization, context
modeling and arithmetic coding. Binarization maps syntax
element to binary symbols (bins). Context modeling estimates
the probability of the bins and arithmetic coding compresses
the bins to bits.

One of the main reasons that a CABAC engine has lim-
ited throughput is due to the data dependencies for context
selection. Often the context selection for a bin depends on the
value of a previously encoded/decoded bin. This dependency
makes parallelism difficult and costly to achieve, particularly
at the decoder, if multiple bins are to be decoded at the same
time. The closer the bins are in terms of time, the tighter the
dependency, since closer, or consecutive, bins are likely to

978-1-4577-2049-9/12/$26.00 ©2012 IEEE PCS 2012

May 7-9, 2012, Kraków, Poland

509

2012 Picture Coding Symposium

Fig. 1: Example of transform coefficient coding for a 4x4 TU
in AVC/H.264.

be processed in parallel within the same cycle. In the worst
case, the current bin depends on the immediate preceding
bin. If the context of a bin depends on the value of another
bin being decoded in parallel, then speculative computations
are required which increases area cost and critical path delay
[9]. The amount of speculation grows exponentially with the
number of parallel bins which limits the throughput that can
be achieved [10]. For HEVC, improvements have been made
to the context selection and coefficient scanning in order to
reduce the amount of speculation required to process multiple
bins in parallel [11].

III. OVERVIEW OF TRANSFORM COEFFICIENT CODING

In video coding, both intra and inter prediction are used
to reduce the amount of data that needs to be transmitted.
Rather than sending the pixels, the prediction error is trans-
mitted. This prediction error is transformed from spatial to
frequency domain to leverage energy compaction properties,
and after quantization, it can be represented in terms of
a few coefficients. The method of signaling the value and
the frequency position of these coefficients is referred to as
transform coefficient coding.

In CABAC, the position of the coefficients is transmitted in
the form of a significance map. Specifically, the significance
map indicates the location of the non-zero coefficients. The
coefficient level information is then only transmitted for the
coefficients with values greater than one, while the coefficient
sign is transmitted for all non-zero coefficients. An example of
transform coefficient coding in AVC/H.264 is shown in Fig. 1.

IV. SIGNIFICANCE MAP

In AVC/H.264, the significance map is signaled by trans-
mitting a significant coeff flag (SCF) for each position to
indicate whether the coefficient is non-zero. The positions are
processed in an order based on a zig-zag scan. After each non-
zero SCF, an additional flag called last significant coeff flag
(LSCF) is immediately sent to indicate whether it is the last
non-zero SCF; this prevents unnecessary SCF from being

signaled. Different contexts are used depending on the position
within the 4x4 and 8x8 transform unit (TU), and whether the
bin represents an SCF or LSCF. Since SCF and LSCF are
interleaved, the context selection of the current bin depends
on the immediate preceding bin. The dependency of LSCF
on SCF results in a strong bin to bin dependency for context
selection for significance map in the AVC/H.264.

In HM-1.0, additional dependencies are introduced between
SCF to improve coding efficiency. Additional TU sizes of
16x16 and 32x32 are used in HEVC. The context selection
for SCF in these larger TU depends on the number of non-
zero neighbors to give coding gains between 1.4 to 2.8% [12].
Specifically, the context of SCF depends on up to 10 neighbors
as shown in Fig. 2a.

A. significant coeff flag (SCF)

Simplification by reducing the neighbor dependencies was
proposed in [13]. Fewer neighbors reduces the context selec-
tion logic complexity, storage cost, and has potential through-
put benefits. Reducing number of neighbors had minimal cost
to coding efficiency. For instance, using only a maximum
of 8 neighbors (removing neighbors A and D as shown in
Fig. 2b) had negligible impact on coding efficiency, while
using only 6 neighbors (removing neighbors A, B, D, E and
H as shown in Fig. 2c) results in a coding loss of only 0.2%.
This was further extended in [14] where only a maximum of
5 neighbors is used by removing dependencies on positions
G and K, as shown in Fig. 2d, since those neighbors pertain
to the most recently processed SCF. This simplification was
adopted into HM-3.0. It should be noted that the neighbor
dependencies are inverted from top-left to bottom-right in HM-
4.0 to accommodate reverse significance map scanning (from
high frequency to low frequency) [15].

Despite reducing the neighbors in HM-3.0, dependency on
the most recently processed SCF still existed for the positions
at the edge of the transform as shown in Fig. 3a. In order to
address this, in HM-4.0, a diagonal scan was introduced to
replace the zig-zag scan [16] as shown in Fig. 3b. Changing
from zig-zag to diagonal scan had negligible impact on coding
efficiency, but removed dependency on recently processed SCF
for all positions in the TU.

B. last significant coeff flag (LSCF)

As mentioned earlier, there are strong data dependencies
between SCF and LSCF. The concept of parallel context
processing (PCP) is introduced in [17] to address this con-
cern. To reduce interleaving of SCF and LSCF, signifi-
cance map PCP technique parallelizes significance map cod-
ing by transmitting a LSCF only once per N number of
SCF. If all of the N SCF are zero, LSCF is not trans-
mitted. [18] avoids all interleaving of SCF and LSCF alto-
gether. Specifically, the X, Y position of the last non-zero
SCF (last significant coeff x and last significant coeff y)
is sent rather than LSCF. For instance, in the example
of shown in Fig. 1, last significant coeff x equal to 3
and last significant coeff y equal to 0 is sent rather than

May 7-9, 2012, Kraków, Poland

510

2012 Picture Coding Symposium

(a) 10 neighbors (HM-1.0) (b) 8 neighbors

(c) 6 neighbors (d) 5 neighbors (HM-
3.0)

Fig. 2: Neighbor dependencies for SCF context selection. X in
blue represents the current position of the bin being processed.

(a) Zig-zag scan

(b) Diagonal scan

Fig. 3: Diagonal scan is used to avoid dependency on most
recently processed SCF. Context selection for blue positions
are affected by values of the neighboring grey positions.

Fig. 4: Grouping bypass bins to increase throughput.
b1=coeff abs level greater1 flag, b2=coeff abs level greater2 flag,
s=sign flag, GR=coeff abs level minus3

last significant coeff flag. Signaling the X, Y position of the
last non-zero SCF was adopted into HM-3.0.

V. COEFFICIENT LEVEL AND SIGN

In AVC/H.264, the coefficient level is composed of two
parts. The first 14 bins, generated with truncated unary bi-
narization, are context coded (i.e. require context selection).
The remaining bins, generated by exp-golomb binarization, are
bypass coded bins, which means that a fixed equal probability
of 0.5 is assumed and thus do not require context selection.
After each coefficient level is signaled, the sign is signaled
with one bypass bin. It is important to note that bypass coded
bins can be processed in parallel much easier than context
coded bins [19].

Parallel context processing (PCP) for coefficient level and
sign was proposed for HM-1.0 in [20]. As with significance
map, reducing the interleaving of bins coded with different
contexts reduces the data dependencies for context selection.
If the context switches less from bin to bin, then fewer
speculative computations for context selection are required.
Grouping the first bin of coefficient levels together as well as
grouping the sign bins together was adopted into HM-1.0.

PCP can be further leveraged with the new binarization
scheme for coefficient levels that was introduced in HM-3.0
[21]. In HM-3.0, the coefficient level is composed of three
parts. Only the first two bins (coeff abs level greater1 flag
and coeff abs level greater2 flag) are context coded and the
remaining bins, generated with Golomb-Rice binarization, are
bypass coded (coeff abs level minus3).

In [22], PCP is applied to the second bin of the coefficient
level. As a result, the all bypass coded bins are grouped to-
gether which maximizes the throughput advantages of bypass
bins. coeff abs level minus3 across multiple coefficients are
grouped together and sign bins are grouped together as shown
in Fig. 4. To reduce storage cost, the sign bins are signaled
before coeff abs level minus3 bins. This reordering of data
to enable parallel context processing has no impact on coding
efficiency and was adopted into HM-4.0.

VI. SUMMARY

Methods such as parallel context processing and diagonal
scans are used to reduce data dependencies in CABAC trans-
form coefficient coding for HEVC. An example of transform
coefficient coding in HM-4.0 is shown in Fig. 5.

Transform coefficient coding for HEVC has been carefully
designed to enable it to deliver higher throughput and higher
coding efficiency as compared with AVC/H.264. Dependencies

May 7-9, 2012, Kraków, Poland

511

2012 Picture Coding Symposium

Fig. 5: Example of transform coefficient coding for a 4x4 TU
in HEVC (HM-4.0).

Tool HM Benefit Coding Gains
Neighbor based context 1.0 coding 1.4% to 2.8%
selection for SCF [12] gain
PCP (sign) [20] 1.0 throughput 0.0%
Simplified neighboring 3.0 throughput 0.0% to 0.1%
dependency [14]
Golomb-Rice Codes 3.0 throughput 0.0% to 0.1%
of coefficient level [21]
Last position coding [18] 3.0 throughput 0.0% to 0.1%
PCP (SCF) [22] 4.0 throughput 0.0%
Diagonal Scan [16] 4.0 throughput 0.0% to 0.1%

TABLE I: Summary of throughput related transform coeffi-
cient coding tools adopted up to HM-4.0.

for context selection of consecutive bins has been reduced
for significance map and coefficient level in order to enable
multiple bins to be processed in parallel. At same time, new
tools for improved coding efficiency have been simplified to
meet this requirement. Table I summarizes the tools adopted
up to HM-4.0. Parallel transform coefficient coding continues
to be an active area of development in JCT-VC [23].

Similar approaches of grouping bypass bins has also been
applied to syntax elements beyond transform coefficients to
speed up CABAC and reduce hardware cost. This work shows
that by accounting for implementation cost when designing
video coding algorithms results in a design that can maximize
processing speed and minimize area cost, while delivering high
coding efficiency in the next generation video coding standard.

ACKNOWLEDGMENT

The work presented in this paper was carried out as a part
of the core experiment on coefficient scanning and coding for
HEVC standardization.

REFERENCES

[1] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive binary
arithmetic coding in the H.264/AVC video compression standard,” IEEE
Trans. on CSVT, vol. 13, no. 7, pp. 620– 636, July 2003.

[2] “Recommendation ITU-T H.264: Advanced Video Coding for Generic
Audiovisual Services,” Tech. Rep., ITU-T, 2003.

[3] B. Bross, W.-J. Han, J.-R. Ohm, G. J. Sullivan, and T. Wiegand,
“JCTVC-F803: WD4: Working Draft 4 of High-Efficiency Video Cod-
ing,” Joint Collaborative Team on Video Coding (JCT-VC), July. 2011.

[4] Vivienne Sze, Madhukar Budagavi, and Mehmet Umut Demircin,
“VCEG-AJ31: CABAC throughput requirements for real-time decod-
ing,” Video Coding Experts Group (VCEG), October 2008.

[5] F. Bossen, “JCTVC-D600: Common test conditions and software
reference configurations,” Joint Collaborative Team on Video Coding
(JCT-VC), Jan. 2011.

[6] V. Sze, K. Panusopone, J. Chen, T. Nguyen, and M. Coban, “JCTVC-
C511: Description of Core Experiment 11: Coefficient Scanning and
Coding,” Joint Collaborative Team on Video Coding (JCT-VC), Oct.
2010.

[7] “HEVC Test Model, HM 4.0,”
https://hevc.hhi.fraunhofer.de/svn/svn HEVCSoftware/tags/HM-4.0/.

[8] T. Davies and A. Fuldseth, “JCTVC-F162: Entropy coding performance
simulations,” Joint Collaborative Team on Video Coding (JCT-VC), July.
2011.

[9] Vivienne Sze, Madhukar Budagavi, Anantha P. Chandrakasan, and
Minhua Zhou, “Parallel CABAC for Low Power Video Coding,” in
IEEE Inter. Conf. on Image Processing,, October 2008, pp. 2096–2099.

[10] V. Sze, “JCTVC-D244: Context selection complexity in HEVC
CABAC,” Joint Collaborative Team on Video Coding (JCT-VC), Jan.
2011.

[11] V. Sze, J. Chen, T. Nguyen, K. Panusopone, and J. Sole, “JCTVC-G041:
CE11: Summary report of Core Experiment on coefficient scanning and
coding,” Joint Collaborative Team on Video Coding (JCT-VC), Nov.
2011.

[12] T. Nguyen, D. Marpe, H. Schwarz, and T. Wiegand, “JCTVC-D061:
CE11: Evaluation of Transform Coding tools in HE configuration,” Joint
Collaborative Team on Video Coding (JCT-VC), Oct. 2010.

[13] V. Sze and M. Budagavi, “JCTVC-C227: Parallelization of
HHI TRANSFORM CODING,” Joint Collaborative Team on Video
Coding (JCT-VC), Oct. 2010.

[14] A. Cheung and W. Lui, “JCTVC-D260: Parallel processing friendly
simplified context selection of significance map,” Joint Collaborative
Team on Video Coding (JCT-VC), Jan. 2011.

[15] J. Sole, R. Joshi, and M. Karczewicz, “JCTVC-F288: CE11: Unified
scans for the significance map and coefficient level coding in high
efficiency,” Joint Collaborative Team on Video Coding (JCT-VC), July
2011.

[16] V. Sze and M. Budagavi, “JCTVC-F129: CE11: Parallelization of
HHI TRANSFORM CODING Fixed Diagonal Scan,” Joint Collabora-
tive Team on Video Coding (JCT-VC), July. 2011.

[17] M. Budagavi and M. U. Demircin, “JCTVC-B088: Parallel Context
Processing techniques for high coding efficiency entropy coding in
HEVC,” Joint Collaborative Team on Video Coding (JCT-VC), July.
2010.

[18] J. Sole, R. Joshi, and M. Karczewicz, “JCTVC-E338: CE11: Parallel
Context Processing for the significance map in high coding efficiency,”
Joint Collaborative Team on Video Coding (JCT-VC), March. 2011.

[19] Yao-Chang Yang and Jiun-In Guo, “High-Throughput H.264/AVC High-
Profile CABAC Decoder for HDTV Applications,” IEEE Trans. on
CSVT, vol. 19, no. 9, pp. 1395 –1399, September 2009.

[20] M. Budagavi, “JCTVC-C062: TE8: TI parallel context processing (PCP)
proposal,” Joint Collaborative Team on Video Coding (JCT-VC), Oct.
2010.

[21] T. Nguyen, “JCTVC-E253: CE11: Coding of transform coefficient levels
with Golomb-Rice codes,” Joint Collaborative Team on Video Coding
(JCT-VC), March 2011.

[22] V. Sze and M. Budagavi, “JCTVC-F130: Parallel Context Processing
of Coefficient Level,” Joint Collaborative Team on Video Coding (JCT-
VC), July. 2011.

[23] B. Bross, W.-J. Han, J.-R. Ohm, G. J. Sullivan, and T. Wiegand,
“JCTVC-H1103: High efficiency video coding (HEVC) text specifica-
tion draft 6,” Joint Collaborative Team on Video Coding (JCT-VC), Feb.
2012.

May 7-9, 2012, Kraków, Poland

512

2012 Picture Coding Symposium

