
8 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 47, NO. 1, JANUARY 2012

A Highly Parallel and Scalable CABAC Decoder for
Next Generation Video Coding

Vivienne Sze, Member, IEEE, and Anantha P. Chandrakasan, Fellow, IEEE

Abstract—Future video decoders will need to support high
resolutions such as Quad Full HD (QFHD, 4096 2160) and fast
frame rates (e.g., 120 fps). Many of these decoders will also reside
in portable devices. Parallel processing can be used to increase
the throughput for higher performance (i.e., processing speed),
which can be traded-off for lower power with voltage scaling. The
next generation standard called High Efficiency Video Coding
(HEVC), which is being developed as a successor to H.264/AVC,
not only seeks to improve the coding efficiency but also to account
for implementation complexity and leverage parallelism to meet
future power and performance demands. This paper presents
a silicon prototype for a pre-standard algorithm developed for
HEVC (“H.265”) calledMassively Parallel CABAC (MP-CABAC)
that addresses a key video decoder bottleneck. A scalable test
chip is implemented in 65-nm and achieves a throughput of 24.11
bins/cycle, which enables it to decode the max H.264/AVC bit-rate
(300Mb/s) with only a 18MHz clock at 0.7 V, while consuming 12.3
pJ/bin. At 1.0 V, it decodes a peak of 3026 Mbins/s for a bit-rate
of 2.3 Gb/s, enough for QFHD at 186 fps. Both architecture and
joint algorithm-architecture optimizations used to reduce critical
path delay, area cost and memory size are discussed.

Index Terms—CABAC, CMOS digital integrated circuits, en-
tropy coding, HEVC, H.264/AVC, low-power electronics, parallel
algorithms, parallel architectures, video codecs, video coding.

I. INTRODUCTION

T ODAY’S video codecs have both power and performance
requirements. High performance (i.e., processing speed)

is needed to deliver the target resolutions and frame rates and
low power consumption is needed to extend battery life. Scala-
bility is also desirable, such that a single video codec can support
a wide variety of applications. Next-generation video codecs
will be expected to achieve at least 4k 2k Quad Full High Def-
inition (QFHD) resolution for ultra-high definition, which has
4 the number of pixels per frame compared to today’s 1080
high definition; frame rates are also expected to increase to 120
frames per second (fps) and beyond to support high-motion se-
quences and slow-motion playback. As a result, over an order
of magnitude increase in data is expected compared to today’s

Manuscript received April 13, 2011; revised June 19, 2011; accepted August
22, 2011. Date of current version December 23, 2011. This paper was approved
by Guest Editor Tanay Karnik. This work was supported by Texas Instruments.
Chip fabrication was provided by Texas Instruments. The work of V. Sze was
supported by the Texas Instruments Graduate Women’s Fellowship for Leader-
ship in Microelectronics and NSERC.
V. Sze is with the Systems and Applications R&D Center, Texas Instruments,

Dallas, TX 75432 USA (e-mail: sze@alum.mit.edu).
A. P. Chandrakasan is with the Microsystems Technology Laboratories,

Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail:
anantha@mtl.mit.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/JSSC.2011.2169310

high definition, which means processing speed and better
compression is required.
The Joint Collaborative Team on Video Coding (JCT-VC) is

currently developing the next generation video coding standard
called High Efficiency Video Coding (HEVC) [1]. It is expected
to deliver 50% better coding efficiency than its predecessor,
H.264/AVC, which is today’s state-of-the-art video coding stan-
dard. This improvement in coding efficiency is likely to come
at a cost of increased complexity and thus power reduction will
continue to be a challenge. To address the requirements of fu-
ture video codecs, this work proposes leveraging parallelism to
increase the throughput for higher performance, which can be
traded-off for lower power with voltage scaling. For existing
standards such as H.264/AVC, the algorithms are fixed and par-
allelism can only be achieved through architecture optimiza-
tions. Since HEVC is still currently under development, there
is an opportunity to jointly design the algorithm and architec-
ture in order to achieve better results.
This work will focus on increasing the throughput of the

video decoder. Specifically, it will address the throughput of the
Context-based Adaptive Binary Arithmetic Coding (CABAC)
engine, which is a key serial bottleneck that currently prevents
a fully parallel video decoder from being achieved. This paper
is organized as follows: Section II provides an overview of
CABAC and highlights the features that make it difficult
to parallelize. Section III describes several architecture and
joint architecture-algorithm optimizations that can be used
to reduce the critical path delay of the CABAC decoder. In
Section IV, a new algorithm called Massively Parallel CABAC
(MP-CABAC) is introduced, which leverages multiple forms
of high level parallelism to increase the throughput while
maintaining high coding efficiency. Optimizations to reduce
area costs, memory size and external memory bandwidth are
also discussed. Finally, Section V presents the measured results
of the MP-CABAC decoder test chip.

II. OVERVIEW OF CABAC

Context-based Adaptive Binary Arithmetic Coding
(CABAC) is one of two entropy coding tools used in
H.264/AVC; CABAC provides 9–14% improvement in coding
efficiency compared to Huffman-based Context-based Adap-
tive Variable Length Coding (CAVLC) [2]. The high coding
efficiency of CABAC can be attributed mainly to two factors.
First, arithmetic coding performs better than Huffman coding,
since it can compress closer to the entropy of a sequence by
effectively mapping the syntax elements (e.g., motion vectors,
coefficients, etc.) to codewords with non-integer number of
bits; this is important when probabilities are greater than 0.5

0018-9200/$26.00 © 2011 IEEE

SZE AND CHANDRAKASAN: A HIGHLY PARALLEL AND SCALABLE CABAC DECODER FOR NEXT GENERATION VIDEO CODING 9

Fig. 1. The key blocks in the CABAC decoder.

Fig. 2. Arithmetic decoding example.

and the entropy is a fraction of a bit [3]. Second, CABAC is
highly adaptive such that it can generate an accurate probability
estimate, which results in better compression.
Themain function of the CABAC decoder is to decode syntax

elements from the encoded bits. The CABAC decoder is com-
posed of three key blocks: arithmetic decoder (AD), de-binarizer
(DB) and context modeler (CM). Fig. 1 shows the connections
between these blocks. The AD decodes the binary symbol (bin)
using the encoded bits and the probability of the bin that is being
decoded. The probability of the bin is estimated using the CM.
These bins are then mapped to syntax elements using the DB.
AD is based on recursive interval division as shown in Fig. 2.

A range, with an initial value of 0 to 1, is divided into two subin-
tervals based on the probability of the bin (e.g.,
and). The encoded bits provide an offset

that, when converted to a binary fraction, selects one of the two
subintervals, which indicates the value of the decoded bin. After
every decoded bin, the range is updated to equal the selected
subinterval, and the interval division process repeats itself. The
range and offset have limited bit-precision, so renormalization
is required whenever the range falls below a certain value to
prevent underflow. Renormalization can occur after each bin is
decoded.
Next, the DB takes the decoded bins and maps them to a de-

coded syntax element. Various forms of mapping are used (e.g.,
unary, exp-golomb, fixed length) based on the type of syntax el-
ement being decoded.
Finally, the CM is used to generate an estimate of the bin’s

probability. An accurate probability estimate must be provided
to the AD to achieve high coding efficiency. Accordingly, the

Fig. 3. Blocks in the context modeler.

Fig. 4. Feedback loops in the CABAC decoder.

CM is highly adaptive and selects one of several hundred dif-
ferent contexts (probability models) depending on the type of
syntax element, binIdx, luma/chroma, neighboring information,
etc. This context selection (CS) is done using a large finite state
machine (FSM) as shown in Fig. 3. A context switch can occur
after each bin. The probability models are stored as 7-bit entries
(6-bit for the probability state and 1-bit for the most probable
symbol (MPS)) in a context memory and addressed using the
context index computed by the CS FSM. Since the probabilities
are non-stationary, the contexts are updated after each bin.
These data dependencies in CABAC result in tight feedback

loops as shown in Fig. 4. Since the range and contexts are up-
dated after every bin, the feedback loops are tied to bins; thus,
the goal is to increase the overall bin-rate (bins per second) of
the CABAC. In this work, two approaches are used to increase
the bin-rate:
1) speed up the loop (increase cycles per second)
2) run multiple loops in parallel (increase bins per cycle)
Due to these data dependencies, H.264/AVC CABAC imple-

mentations [4]–[7] need to use speculative computations to in-
crease bins per cycle; however, the increase that can be achieved
with this method is limited. Unlike the rest of the video de-
coder, which can use macroblock-line level (wavefront) paral-
lelism, CABAC can only be parallelized across frames [8]; con-
sequently, buffering is required between CABAC and the rest of
the decoder, which increases external memory bandwidth [9].
By allowing the CABAC algorithm to also be optimized, fur-
ther increase in bins per cycle can be achieved without addi-
tional cost to memory bandwidth.

III. SPEED UP CABAC

Increasing the bin-rate of the CABAC can be achieved by re-
ducing the delay of the feedback loops. This section discusses
how pipelining the CABAC decoder as well as applying both ar-
chitecture and joint architecture-algorithm optimizations to the
arithmetic decoder (AD) can be used to reduce the critical path
delay.

10 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 47, NO. 1, JANUARY 2012

Fig. 5. Pipelining the CABAC to reduce the critical path delay. (a) Architecture of pipelined CABAC. (b) Timing diagram of the pipelined CABAC (Note:
duration of operations not to scale.)

A. Pipelining CABAC

One of the key loops in the CABAC passes through all three
blocks as shown in Fig. 5(a). Within a cycle, context selection is
performed followed by arithmetic decoding and debinarization
as shown in Fig. 5(b). The syntax element at the output of the
debinarizer is registered and used by the rest of the decoder. To
reduce the critical path delay of this loop, a pipeline register is
inserted between the context memory of the context modeler
and the arithmetic decoder. As a result, the context selection
for the next bin is performed at the same time as the arithmetic
decoding of the current bin. However, the context used for the
next bin depends on the value of the current bin being decoded.
To address this data dependency, while the arithmetic decoder
(stage 2) is decoding the current bin, the two context candidates
for the next bin are computed by the context selection FSM
(stage 1). Once the current bin is decoded, it is used to select
between the two context candidates for the next bin. The context
index of the next bin is compared with the context index of the
current bin. If they are the same, then the updated context state
(i.e., probability) is used for the next bin. Otherwise, the context
state is read from the memory.
Pipelining the CABAC in this manner reduces its critical

path delay by approximately 40%. This architectural approach

of pipelining and speculatively computing two context candi-
dates to reduce the critical path can be used for the existing
H.264/AVC CABAC. The context selection process involves
two steps: 1) calculate the state transition of the FSM; 2) cal-
culate the context index and read the candidate from the context
memory. Speculative calculations are only done for the state
transition (i.e., two possible transitions are computed, and one is
selected based on decoded bin). The area cost for the additional
context candidate computation logic is less than 3% of the total
CABAC engine area and accounts for 4% the context selection
power.

B. Optimization of Arithmetic Decoder

The data flow of the arithmetic decoder shown in Fig. 6. As
mentioned earlier, arithmetic decoding involves recursively di-
viding the range into subintervals. The arithmetic decoder uses
the probability of the bin to divide the range into two subinter-
vals (the range of least probable symbol (LPS), rLPS, and the
range of MPS, rMPS). To calculate the size of the subintervals,
the H.264/AVC CABAC uses a look up table (LUT) called a
modulo coder (M coder) rather than a true multiplier to reduce
implementation complexity [10]. The offset is compared to the
subintervals to make a decision about the decoded bin. It then

SZE AND CHANDRAKASAN: A HIGHLY PARALLEL AND SCALABLE CABAC DECODER FOR NEXT GENERATION VIDEO CODING 11

Fig. 6. Data flow in arithmetic decoder in H.264/AVC [12].

Fig. 7. Four optimizations of the arithmetic decoder to reduce critical path
delay.

updates and renormalizes the range and sends the updated con-
text back to the context memory.
Fig. 7 shows the architecture of the arithmetic decoder. The

inputs to the arithmetic decoder include current context state
(and MPS), range, offset, next bits, and shift (i.e., number
of next bits). The outputs include updated context state (and
MPS), updated range, updated offset, decoded bin and number
of shifted bits due to renormalization.

Renormalization occurs in the critical path of the arithmetic
decoder. Four optimizations are performed to speed up renor-
malization, increase concurrency and shorten the critical path
delay of the arithmetic decoder as shown in Fig. 7: 1) subin-
terval reordering; 2) leading zero LUT; 3) early range shifting;
and 4) next cycle offset renormalization. Subinterval reordering
is a joint algorithm-architecture optimization, which requires
changes to the algorithm and can be used in the yet to be fi-
nalized HEVC [11]. The other three optimizations 2), 3), and 4)
are purely architectural, which means that they can also be ap-
plied to implementations of the existing H.264/AVC standard.
The aggregate impact of these optimizations was a 22% reduc-
tion in the critical path delay of the AD. These optimization will
be described in more detail in the next four sections.
1) Subinterval Reordering: In H.264/AVC, the rMPS is com-

pared to the offset to determine whether the bin is MPS or LPS.
The rMPS interval is computed by first obtaining rLPS from a
64 4 LUT (using bits [7:6] of the current 9-bit range and the
6-bit probability state from the context) and then subtracting it
from the current range. The LUT contains constant values and
is implemented with muxes. Depending on whether an LPS or
MPS is decoded, the range is updated with their respective in-
tervals. To summarize, the range division steps in the arithmetic
decoder are as follows:
i) obtain rLPS from the 64 4 LUT;
ii) compute rMPS by subtracting rLPS from current range;
iii) compare rMPSwith offset to make bin decoding decision;
iv) update range based on bin decision.
If the offset is compared to rLPS rather than rMPS, then the

comparison and subtraction to compute rMPS can occur at the
same time. Fig. 8 shows the difference between the range order
of H.246/AVC CABAC andMP-CABAC. The two orderings of
the intervals (i.e., which interval begins at zero, as illustrated in
Fig. 8) are mathematically equivalent in arithmetic coding and
thus changing the order has no impact on coding efficiency. This
was also observed for the Q-coder in [13]. With this change,
the updated offset is computed by subtracting rLPS from offset
rather than rMPS. Since rLPS is available before rMPS, this
subtraction can also be done in parallel with range-offset com-
parison. Changing the order of rLPS and rMPS requires the al-
gorithm to be modified. Subinterval reordering was verified to
have no coding penalty using the test model software of HEVC
(HM-2.0) [14] under the common conditions set by the JCT-VC
standards body [15]. This optimization accounts for half of the
overall 22% critical path reduction.
2) Leading Zero LUT: After the range is updated based on

the bin decision, renormalization may be necessary for the range
and offset due to the use of finite bit precision. Renormalization
involves determining the number of leading zeros (LZ) in the
updated range and shifting the range accordingly (Fig. 9). LZ
can be determined through the use of muxes in the form of a
priority encoder. However, using a serial search for the first non-
zero can increase the critical path delay.
If an LPS is decoded, the updated range is rLPS and renormal-

ization must occur. Recall that rLPS is stored in a 64 4 LUT
implemented with muxes, indexed by the probability state and
bits [7:6] of the original range. Since every rLPS can be mapped
to a given LZ, an LZ LUT can be generated that is also indexed

12 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 47, NO. 1, JANUARY 2012

Fig. 8. Proposed joint algorithm-architecture optimization called subinterval reordering, which reduces critical path delay with no coding efficiency loss.

Fig. 9. Renormalization in arithmetic decoder.

by the probability state and original range. This enables LZ to be
determined in parallel with rLPS and reduces the critical path by
avoiding the serial priority encoder. The LZ LUT has the same
number of entries (64 4) as the rLPS LUT, but each entry is
only 3-bits (for a max shift of 7) compared with 9-bits for rLPS
LUT; thus the LZ LUT is approximately 1/3 of the rLPS LUT
size. The LZ LUT accounts for 3% of the total arithmetic de-
coder area and 2% of the arithmetic decoder power.
If an MPS is decoded, LZ can only be determined after the

rMPS subtraction. However, LZ can be quickly determined
from the most significant bit (MSB) of the updated range rMPS
and thus has little impact on the critical path.
3) Early Range Shifting: After a decision is made on the de-

coded bin, and LZ is determined, the range is shifted to the left
based on LZ. The shifting can be implemented using shift regis-
ters; however, this approach of moving one bit per cycle results
in up to 7 clock cycles per renormalization (for the minimum
range value of 2). Alternatively, the shifting can be done through
the use of combinational logic (e.g., 9:1 mux) which can be done
in a single cycle, but may increase the critical path.
To mitigate this, the shifting can be done before the decoded

bin is resolved. Specifically, rLPS is shifted in parallel with the
range-offset comparison and rMPS subtraction described ear-
lier. rMPS is shifted by a maximum of one, which can be done
quickly after the rMPS subtraction. Once the decoded bin is re-
solved, the range can be immediately updated with the renor-
malized rLPS or rMPS.

4) Next Cycle Offset Renormalization: Offset renormaliza-
tion involves a left shift by the same amount based on the LZ of
the range, and new bits are appended to the right. The offset is
not used until after rLPS is determined. Therefore, rather than
performing this shift in the current cycle after the bin is resolved,
the shifting operation can be moved to the next cycle where it is
done in parallel with the rLPS look up.

IV. MASSIVELY PARALLEL CABAC

The bin-rate can also be increased by processing multiple
bins per cycle. However, due to feedback loops, processingmul-
tiple bins per cycle requires speculative computations. Instead
of trying to process more bins per cycle within an arithmetic de-
coder, this work proposes replicating the loop and running many
arithmetic decoders in parallel. It is also important that the high
coding efficiency of CABAC be maintained. For instance, in
H.264/AVC a frame can be divided into several regular slices
which can be processed in parallel. These H.264/AVC slices
contain macroblocks (i.e., 16 16 blocks of pixels) that are
coded completely independently from other slices making them
suitable for parallel processing. However, since the H.264/AVC
slices are independent, no redundancy between the slices can be
removed which leads to significant coding loss.
Massively Parallel CABAC (MP-CABAC), previously

developed by the authors [16], is currently under consid-
eration for HEVC, and has been adopted into the standard
body’s JM-KTA working software [17]. It enables parallel
processing, while maintaining the high coding efficiency of
CABAC. MP-CABAC has a more efficient coding efficiency
to throughput trade-off than H.264/AVC slices as shown in
Fig. 10(a). For a increase in throughput, MP-CABAC
has a lower coding penalty than H.264/AVC slices. Note
that MP-CABAC also has an improved trade-off between
throughput and area cost compared with H.264/AVC slices, due
to better workload balancing and reduced hardware replication
(Fig. 10(b)).
MP-CABAC uses a combination of two forms of parallelism:

Syntax Element Partitions (SEP) and Interleaved Entropy Slices
(IES). SEP enables different syntax elements (e.g., motion vec-
tors, coefficients, etc.) to be processed in parallel with low area

SZE AND CHANDRAKASAN: A HIGHLY PARALLEL AND SCALABLE CABAC DECODER FOR NEXT GENERATION VIDEO CODING 13

Fig. 10. Trade-off comparison between MP-CABAC and H.264/AVC slices measured under common conditions specified by the standardization body [20].
Coding efficiency and throughput are averaged across prediction structures, sequences and quantization. To account for any workload imbalance, the slice with the
largest number of bins per frame was used to compute the throughput. (a) Coding efficiency versus throughput trade-off. (b) Area versus throughput trade-off.

cost [18]. IES enables several slices to be processed in parallel,
allowing the entire decoder to achieve wavefront parallel pro-
cessing without increasing external memory bandwidth [19].
SEP and IES will be described in more detail the next two
sections.

A. Syntax Element Partitions (SEP)

Syntax Element Partitions (SEP) is a method distributing the
bins across parallel arithmetic decoders based on the syntax el-
ement [18]. This approach has both coding efficiency and area
cost benefits.
One of the features that gives CABAC its high coding ef-

ficiency is that the contexts are adaptive. While encoding/de-
coding, the contexts undergo training to achieve an accurate es-
timate of the bin probabilities. A better estimate of the probabil-
ities results in better coding efficiency. A drawback of breaking
up a frame into slices is that there are fewer macroblocks, and
consequently fewer syntax elements, per slice. Since the entropy
engine is reset every slice, the context undergoes less training
and can results in a poorer estimate of the probabilities.

To avoid reducing the training, rather than processing slices
in parallel, syntax elements are processed in parallel. In other
words, rather than grouping bins by macroblock and placing
them in different slices, bins are grouped based on syntax ele-
ment and placed in different partitions which are then processed
in parallel (Fig. 11).1 As a result, each partition contains all the
bins of a given syntax element, and the context can then un-
dergo the maximum amount of training (i.e., across all occur-
rences of the element in the frame) to achieve the best possible
probability estimate and eliminate the coding efficiency penalty
from reduced training. Table I shows the five different parti-
tions of syntax elements. The syntax elements were assigned
to partitions based on the bin distribution in order to achieve
a balanced workload. It should be noted that as the number of
partitions increases, it becomes more difficult to ensure a bal-
anced workload across partitions, which limits the throughput
that can be achieved with this form of parallelism. Techniques
such as those proposed in [18], where partitions are adaptively
recombined, can be used to improve workload balance. A start

1SEP are color coded in Figs. 11, 12, 13, 15, 20 and 21.

14 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 47, NO. 1, JANUARY 2012

Fig. 11. Cycle reduction is achieved by processing SEP in parallel.

Fig. 12. Dependencies between SEP requires that partitions be pipelined and
synchronized.

Fig. 13. Context Selection FSM is divided into smaller FSM for each SEP and
FIFOs are used for synchronization.

code prefix for demarcation is required at the beginning of each
partition.
There are dependencies between syntax elements in different

partitions as shown in Fig. 12. For instance, the type of predic-
tion (spatial or temporal), which is signaled by mb_type in the
MBINFO partition, needs to be known in order to determine
whether motion vectors or intra prediction modes should be de-
coded in the PRED partition. To address this, a pipeline architec-

TABLE I
SYNTAX ELEMENT PARTITIONS

Fig. 14. Partition engine (PE) composed of small SEP specific context selec-
tion FSM and context memory.

ture is used such that different macroblocks for different parti-
tions are processed at the same time. For instance, the MBINFO
partition for a given macroblock (MB0) must be decoded before
the PRED partition for the same macroblock (MB0). However,
the MBINFO partition of MB2 can be decoded in parallel with
the PRED partition of MB0 as shown in Fig. 12. Thus, the pro-
cessing of each partitionmust be synchronized. Synchronization
can be done using data driven first-in-first-out queues (FIFOs)
between engines, similar to the ones used in [21] and [22] be-
tween processing units.
The hardware required to decode five SEP in parallel can

be implemented with relatively low area cost. The FSM of the
context modeler (CM) and de-binarizer (DB) is divided into
smaller FSMs for each SEP. These small FSM remain con-
nected by FIFOs to synchronize the different partitions as shown
in Fig. 13. The register-based context memory is divided into
smaller memories for each SEP so that the number of storage
elements remain the same. While the number of memory ports
increases, the address decoder for each port is smaller than the
one used for the single large memory and thus the area of the
context memory is only increased by around 26%. Accounting

SZE AND CHANDRAKASAN: A HIGHLY PARALLEL AND SCALABLE CABAC DECODER FOR NEXT GENERATION VIDEO CODING 15

Fig. 15. Slice engine composed of five partition engines that operate concur-
rently on five different SEP.

Fig. 16. Bins per cycle distributions for different sequences using the slice en-
gine architecture.

for the additional contextmemory ports, the FIFOs and the repli-
cated AD, SEP parallelism can be achieved by increasing the
overall area by only 70%.
Five partition engines (PEs) are formed from the small FSM,

context memory and AD and operate in parallel to process the
five different SEP (Fig. 14). Speculative computations for state
transition in the FSM, discussed in Section III-A, can also be
used in partition engines (note: logic is omitted in Fig. 14 for
simplicity). In fact, the smaller FSM for each partition engine
may help to reduce the power overhead of the speculative com-
putations. These five partition engines are combined to form a
slice engine shown in Fig. 15. During the stall cycles, the parti-
tion engine clock is disabled with hierarchical clock gating to re-
duce power. Using this slice engine architecture, up to five bins
can be decoded in parallel with an average throughput increase
of . The bins per cycle distribution of various sequences
for the slice engine is shown in Fig. 16.

B. Interleaved Entropy Slices (IES)

To achieve additional throughput improvement, the previous
approach can be combined with Interleaved Entropy Slices
(IES). For the purpose of highlighting the differences between
H.264/AVC slices and IES, the video decoder can be broken
into two parts: the entropy decoding portion (which will be
referred to as entropy decoder), and the rest for the decoder

(which will be referred to as pixel decoder). Furthermore, the
definition of dependencies in the subsequent discussion refers
to the top and left neighboring macroblocks.
As mentioned earlier, in H.264/AVC, a frame can be broken

into regular slices. In most cases,2 the slices are independent
of each other, meaning each slice can be fully decoded (i.e.,
reconstruct all pixels) without any information from the other
slices. This allows regular slices to be fully decoded in parallel.
Accordingly, the entropy decoder and pixel decoder can run in
parallel. One key drawback of having slices that are entirely
independent is that redundant information cannot be removed
across slices, which results in coding loss.
Entropy slices, introduced in [23], enable independent en-

tropy decoding, where all the syntax elements can be decoded
without information from other entropy slices. However, to
achieve better coding efficiency than fully independent slices
(i.e., H.264/AVC slices), there remains dependencies between
the entropy slices when using the syntax elements to decode
pixels (e.g., for spatial and motion vector prediction). In other
words, the entropy decoder can run in parallel; however, it does
not enable parallelism in the pixel decoder. In order for both the
entropy decoder and pixel decoder to operate in parallel, frame
level buffering is required which increases external memory
bandwidth [9].
Interleaved entropy slices (IES) allow dependencies across

slices for both syntax element and pixel decoding which im-
proves coding efficiency [19]. To enable parallel processing
of slices that have dependencies, IES divides a frame into
slices in a different manner than entropy slices and H.264/AVC
slices. A typical spatial location of the macroblock allocated
to H.264/AVC slices and entropy slices is shown in Fig. 17(a).
For IES, the macroblocks are allocated as shown in Fig. 17(b).
Different rows of macroblocks are assigned to each slice. As
long as slice 0 is one or two macroblocks ahead of slice 1, both
slices can be decoded in parallel; similarly, slice 1 must be
ahead of slice 2 and slice 2 must be ahead of slice 3. This form
of processing is often referred to wavefront processing. With
interleaved entropy slices, both the entropy decoder and pixel
decoder can process different slices in parallel. Consequently,
no buffering is required to store the decoded syntax elements,
which reduces memory costs. In other words, IES allows the
entire decoder to achieve wavefront parallel processing without
increasing external memory bandwidth. This can have benefits
in terms of reducing system power and possibly improving
performance (by avoiding read conflicts in shared memory).
Using IES to parallelize the entire decoder path can improve
the overall throughput and reduce the power of the entire video
decoder [19].
IES are processed in parallel by several slice engines as

shown in Fig. 19. IES FIFOs are used between slice engines
to synchronize IES required due to top block dependencies.
The properties of the neighboring blocks are used for context
selection and are stored in the IES FIFOs and line buffer.
Section IV-D will discuss a joint algorithm-architecture op-
timization in the context selection logic that reduces the line
buffer size.

2An exception is when deblocking is enabled across regular slices.

16 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 47, NO. 1, JANUARY 2012

Fig. 17. Macroblock allocation to different slices. (a) H.264/AVC slices. (b) Interleaved entropy slices.

Fig. 18. Example of row balancing when the number of rows in a frame (e.g., 7) is not a multiple of the number of slices (e.g., 4).

Fig. 19. Architecture for IES.

The number of accesses to the large line buffer is also re-
duced for IES. In Fig. 17(b), the line buffer (which stores an
entire macroblock row) is only read by slice 0 (and written by
slice 3). Since slice 0 is only several macroblocks ahead of slice
1, slice 1 only needs to access a small cache (IES FIFO), which
stores only a few macroblocks, for its last line (top) data. Thus
out of N slices, N-1 will access small FIFOs for the last line
data, and only one will access the large line buffer. If the line
buffer is stored on-chip, interleaved entropy slices reduces area
cost since it does not need to be replicated for every slice as with
H.264/AVC and entropy slices. Alternatively, if the line buffer is
stored off-chip, the off-chip memory bandwidth for last line ac-
cess is reduced to 1/N of the H.264/AVC line buffer bandwidth.
Finally, in interleaved entropy slices the number of bins

per slice (i.e., workload) tends to be more equally balanced;
consequently, a higher throughput can be achieved for the
same amount of parallelism. Workload imbalance can also
occur when the number of rows in a frame is not a multiple
of the number of slices (i.e., the number of macroblocks per
slice is not equal). To address this, row balancing is used,

where the IES assigned to each slice engine rotates for each
frame resulting in up to a 17% increase in throughput. Fig. 18
shows an example of how row balancing can used to balance a
frame with 7 rows across 4 slice engines (SE). Better workload
balancing and avoiding line buffer replication improves the
trade-off between throughput and area as shown in Fig. 10(b).
To enable scalability, the number of slice engines is config-

urable; a multiplexer connects the output of the last enabled slice
engine to the line buffer. To reduce power, the clocks to the dis-
abled slice engines are turned off using hierarchal clock gating.
Over increase in throughput is achieved with 16 IES per
frame using the architecture in Fig. 19.
To summarize, the benefits of interleaved entropy slices in-

clude the following:
• improved coding efficiency over H.264/AVC slices;
• simple synchronization with IES FIFOs;
• reduction in memory bandwidth;
• improved workload balance;
• fully parallel video decoder.
In subsequent HEVC proposals [24], [25], IES has been

extended to include context initialization dependencies across
slices to improve coding efficiency; a multithreaded imple-
mentation of this combined approach was demonstrated and
the extended version of IES has been adopted into the working
draft 4 of the HEVC standard [26].

C. Data Structure

Fig. 20 shows the structure of the encoded data which de-
scribes the frames in the video sequence. For the MP-CABAC,
each frame is composed of several IES and each IES is com-
posed of five SEP. A 32-bit startcode is inserted at the begin-
ning of each partition to enable the parser to access any parti-
tion within the bitstream. The partitions can then be distributed
across several engines to be processed in parallel. The slice

SZE AND CHANDRAKASAN: A HIGHLY PARALLEL AND SCALABLE CABAC DECODER FOR NEXT GENERATION VIDEO CODING 17

Fig. 20. MP-CABAC data structure. In this example, there are four IES per
frame and five SEP per IES.

Fig. 21. Optimizations performed onMP-CABAC architecture. (PE = partition
engine).

header information, such as slice type (I, P, B), slice quantiza-
tion, etc., is inserted at the beginning of the MBINFO partition.
The MP-CABAC test chip presented in this paper supports up
to 16 IES per frame with 80 arithmetic decoders running in par-
allel.

D. Line Buffer Reduction

Fig. 21 shows the top level MP-CABAC architecture used to
decode the data structure in Fig. 20 and highlights the optimiza-
tions discussed in this paper. Section III discussed optimizations
that were performed to speed up the AD, while Sections IV-A
and IV-B described how AD can be replicated to run in parallel
while still maintaining high coding efficiency. This section will
discuss how to reduce the size of the line buffer.
To make use of the spatial correlation of neighboring data,

context selection can depend on the values of the top and left
blocks as shown in Fig. 22. Consequently, a line buffer is re-
quired in the CABAC engine to store information pertaining to
the previously decoded row. The depth of this buffer depends on
the width of the frame being decoded which can be quite large
for high resolution (e.g., QFHD) sequences. The bit-width of the
buffer depends on the type of information that needs to be stored
per block or macroblock in the previous row. This section dis-
cusses a joint algorithm-architecture optimization that reduces
the bit-width of this data to reduce the overall line buffer size of
the CABAC.

Fig. 22. Modified context selection for mvd.

Specifically, this work proposes modifying the context selec-
tion for motion vector difference (mvd). mvd is used to reduce
the number of bits required to represent motion information.
Rather than transmitting the motion vector, the motion vector is
predicted from its neighboring 4 4 blocks and only the differ-
ence between motion vector prediction (mvp) and motion vector
(mv), referred to as mvd, is transmitted.

A separate mvd is transmitted for the vertical and horizontal
components. The context selection ofmvd depends on neighbors
A and B as shown in Fig. 22. For position C, context selection
is dependent on A and B (4 4 blocks for mvd); a line buffer
required to store the previous row of decoded data.
In H.264/AVC, neighboring information is incorporated into

the context selection by adding a context index increment (be-
tween 0 to 2 for mvd) to the calculation of the context index.
The mvd context index increment, , is computed in two
steps [2]:
Step 1: Sum the absolute value of neighboring mvds

where and represent the left and top neighbor
and indicates whether it is a vertical or hori-
zontal component.

Step 2: Compare to thresholds of 3 and 32

With the upper threshold set to 32, a minimum of 6 bits of
the mvd has to be stored per component per 4 4 block in the
line buffer. Certain blocks may be bi-predicted which means
up to two motion vectors are required per block. For QFHD,
there are (4096/4) 1024 4 4 blocks per row, which implies
6 2 2 1024 24,576 bits are required for mvd storage.
To reduce the memory size, rather than summing the com-

ponents and then comparing to a threshold, this work proposes
separately comparing each component to a threshold and sum-
ming their results. In other words:
Step 1: Compare the components of mvd to a threshold

18 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 47, NO. 1, JANUARY 2012

Fig. 23. Die micrograph and floorplan of test chip. (a) Die micrograph. 16 slice engines are highlighted. (b) Floorplan of the slice engine.

Step 2: Sum the results and from Step 1

A single threshold of 16 is used. Consequently, only a single
bit is required to be stored per component per 4 4 block; the
size of the line buffer for mvd is reduced to

bits. In H.264/AVC, the overall line buffer size of the
CABAC required for all syntax elements is 30,720 bits. The
modified mvd context selection reduces the memory size by
67%, from 30,720 bits to 10,240 bits. This optimization has neg-
ligible impact on coding efficiency [11].

V. RESULTS

The MP-CABAC test chip shown in Fig. 23(a) was imple-
mented in 65-nm CMOS [27]. The floorplan of the slice engine
is shown in Fig. 23(b). Table II shows a summary of the chip
features. The MP-CABAC test chip contains 80 arithmetic de-
coders running in parallel. A round robin interface is used to
move data between these parallel engines and the I/O of the
chip [28].
Table III compares the MP-CABAC test chip against ex-

isting state-of-the-art H.264/AVC CABAC implementations.
MP-CABAC achieves an average of 24.11 bins/cycle across
several HD video sequences, which is 10.6 higher than
existing H.264/AVC CABAC implementations [4]–[7]. Note
that the throughput of these H.264/AVC CABAC implemen-
tations are limited by the fixed H.264/AVC algorithm. The
MP-CABAC approach can be combined with techniques used
in [4]–[7] for additional throughput increase of 1.32 to 2.27
on top of the 24.11 bins/cycle.

Fig. 24. Comparison of the minimum frequency require to decode 300 Mb/s
sequences. Lower frequency implies additional voltage scaling can be used for
low power applications.

At 1.0 V, it has a performance of 3026Mbins/s for a bit-rate of
2.3 Gbps, enough for real-timeQFHD at 186 fps, or equivalently
7.8 streams of QFHD at 24 fps. For low power applications,
the MP-CABAC test chip decodes the max H.264/AVC bit-rate
(300 Mb/s) with a 18 MHz clock at 0.7 V, consuming only 12.3
pJ/bin (Fig. 24).
Fig. 25 shows the trade-off between measured power, perfor-

mance (bin-rate) and coding efficiency across a wide operating
range. Scaling the number of IES per frame from 1 to 16 in-
creases the performance range by an order or magnitude, and
reduces the minimum energy per bin by to 10.5 pJ/bin with
less than a 5% coding penalty. Note that the metric used to mea-
sure the energy efficiency (performance/watt) of the CABAC

SZE AND CHANDRAKASAN: A HIGHLY PARALLEL AND SCALABLE CABAC DECODER FOR NEXT GENERATION VIDEO CODING 19

TABLE II
SUMMARY OF CHIP IMPLEMENTATION

TABLE III
COMPARISON OF MP-CABAC WITH STATE-OF-THE-ART H.264/AVC CABAC IMPLEMENTATIONS. NOTE: APPROACHES IN THIS WORK ARE COMPLEMENTARY

TO BIN LEVEL APPROACHES IN THESE OTHER IMPLEMENTATIONS AND CAN BE COMBINED FOR HIGHER OVERALL PERFORMANCE

Fig. 25. Trade-off between coding efficiency, power and performance (bin-rate).

is in terms of bins/s/mW (i.e., pJ/bin) rather than pixels/s/mW,
which is traditionally used for full video decoders. pJ/bin is used
since the performance of CABAC is dictated by the bin-rate
(Mbins/s), which can vary widely for a given frame rate and
resolution (pixels/s).

Figs. 26 and 27 shows the power and area breakdown of
the core, slice engine and across partition engines. All mem-
ories (e.g., context memory, line buffer, SEP FIFO, and IES
FIFO) were implemented with registers. Additional increase in
throughput can be achieved by increasing the depth of the SEP

20 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 47, NO. 1, JANUARY 2012

Fig. 26. Simulated (post-layout) power breakdown ofMP-CABAC. (a) Breakdown within MP-CABAC core. (b) Breakdown within a slice engine. (c) Breakdown
across partitions.

Fig. 27. Synthesis area breakdown of MP-CABAC. (a) Breakdown within MP-CABAC core. (b) Breakdown within a slice engine. (c) Breakdown across parti-
tions.

Fig. 28. Trade-off between FIFO depth and throughput. (a) SEP FIFO. (b) IES FIFO.

FIFO and IES FIFOs as shown in Fig. 28. However, this comes
at the cost of increased area. Input and output FIFOs in Figs. 26
and 27 refer to the bitstream and decoded bin buffers. The con-
text initialization was designed to perform initialization of all
probability models within a cycle; the context initialization area
in Fig. 27(a) can be reduced by make the initialization process
serial.
This work presents several methods of increasing throughput

(performance) with minimal overhead to coding efficiency. The
throughput can then be traded-off for power savings via voltage
scaling. As previously discussed, a measured power reduc-
tion was achieved by using 16 IES which increased throughput
by over . From the voltage-delay relationship, the power im-
pact from SEP, pipelining CABAC and optimizing AD can be
estimated to be , and , based solely on voltage

scaling from nominal supply voltage. Note that the amount of
power savings for a given increase in throughput depends on
the operating point on the voltage-delay curve. Thus, while the
throughput benefits of each innovation are mostly cumulative,
the power savings are not. Since throughput is traded-off for
power savings, both throughput and power benefits cannot be
achieved simultaneously.

VI. SUMMARY

Both power and performance demands will continue to rise
for future video codecs. It will be increasingly difficult to
meet these demands with architecture optimizations alone. The
MP-CABAC test chip presented here demonstrates that through
joint design of both algorithm and architecture, improvements
in power, performance and coding efficiency can be achieved.

SZE AND CHANDRAKASAN: A HIGHLY PARALLEL AND SCALABLE CABAC DECODER FOR NEXT GENERATION VIDEO CODING 21

In particular, MP-CABAC is able to deliver bin-rates up to 3026
Mbin/s by leveraging two highly parallel algorithms, Syntax
Element Partitions (SEP) and Interleaved Entropy Slices (IES),
and using subinterval reordering to reduce the critical path
delay. These algorithms can be easily mapped to parallel
hardware while at the same time reducing the area cost and
memory bandwidth. Finally, the proposed architecture-driven
algorithms maintain high coding efficiency which is critical for
the next generation video coding standard.

ACKNOWLEDGMENT

The authors are grateful to M. Budagavi, D. Buss, D. Finchel-
stein, and A. Wang for their support and valuable feedback. The
authors would also like to thank Texas Instruments for algorithm
support.

REFERENCES

[1] Joint Call for Proposals on Video Compression Technology, ITU-T,
Q6/16 Visual Coding and ISO/IEC JTC1/SC29/WG11 Coding of
Moving Pictures and Audio, Jan. 2010.

[2] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive bi-
nary arithmetic coding in the H.264/AVC video compression standard,”
IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 7, pp. 620–636,
Jul. 2003.

[3] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data
compression,” Commun. ACM, vol. 30, no. 6, pp. 520–540, 1987.

[4] T.-D. Chuang, P.-K. Tsung, L.-M. C. P.-C. Lin, T.-C. Ma, Y.-H. Chen,
and L.-G. Chen, “A 59.5 scalable/multi-view video decoder chip
for quad/3D full HDTV and video streaming applications,” in 2010
IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2010, pp.
330–331.

[5] J.-W. Chen and Y.-L. Lin, “A high-performance hardwired CABAC
decoder for ultra-high resolution video,” IEEE Trans. Consum. Elec-
tron., vol. 55, no. 3, pp. 1614–1622, Aug. 2009.

[6] P. Zhang, D. Xie, and W. Gao, “Variable-bin-rate CABAC engine for
H.264/AVC high definition real-time decoding,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 17, no. 3, pp. 417–426, Mar.
2009.

[7] Y.-C. Yang and J.-I. Guo, “High-throughput H.264/AVC high-profile
CABAC decoder for HDTV applications,” IEEE Trans. Circuits Syst.
Video Technol., vol. 19, no. 9, pp. 1395–1399, Sep. 2009.

[8] S. Nomura, F. Tachibana, T. Fujita, C. K. Teh, H. Usui, F. Yamane, Y.
Miyamoto, C. Kumtornkittikul, H. Hara, T. Yamashita, J. Tanabe, M.
Uchiyama, Y. Tsuboi, T. Miyamori, T. Kitahara, H. Sato, Y. Homma,
S. Matsumoto, K. Seki, Y. Watanabe, M. Hamada, and M. Takahashi,
“A 9.7 mW AAC-decoding, 620 mW H.264 720 p 60 fps decoding,
8-core media processor with embedded forward-body-biasing and
power-gating circuit in 65 nm CMOS technology,” in 2008 IEEE Int.
Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2008, pp. 262–612.

[9] D. Zhou, J. Zhou, X. He, J. Zhu, J. Kong, P. Liu, and S. Goto, “A 530
Mpixels/s 4096 2160@60 fps H.264/AVC high profile video decoder
chip,” IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 777–788, Apr.
2011.

[10] D. Marpe and T. Wiegand, “A highly efficient multiplication-free
binary arithmetic coder and its application in video coding,” in
Proc. 2003 IEEE Int. Conf. Image Processing, Sep. 2003, vol. 2, pp.
II-263–II-266, Vol. 3.

[11] V. Sze and A. P. Chandrakasan, “Joint algorithm-architecture opti-
mization of CABAC to increase speed and reduce area cost,” in Proc.
2011 IEEE Int. Conf. Acoustics, Speech and Signal Processing, May
2011, pp. 1577–1580.

[12] Recommendation ITU-T H.264: Advanced video coding for generic
audiovisual services, ITU-T, Tech. Rep., 2003.

[13] J. L. Mitchell and W. B. Pennebaker, “Optimal hardware and software
arithmetic coding procedures for the Q-Coder,” IBM J. Res. & Dev.,
vol. 32, no. 6, pp. 727–736, Nov. 1988.

[14] HEVC test model, HM-2.0. [Online]. Available: https://hevc.hhi.fraun-
hofer.de/svn/svn_HEVCSoftware/tags/

[15] F. Bossen, “JCTVC-D600: Common test conditions and software
reference configurations,” Joint Collaborative Team on Video Coding
(JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, Jan.
2011.

[16] V. Sze, M. Budagavi, and A. Chandrakasan, “VCEG-AL21: Massively
parallel CABAC,” ITU-T Study Group 16 Question 6, Video Coding
Experts Group (VCEG), Jul. 2009.

[17] KTA reference software, kta2.7. [Online]. Available: http://iphome.
hhi.de/suehring/tml/download/KTA/

[18] V. Sze and A. P. Chandrakasan, “A high throughput CABAC algo-
rithm using syntax element partitioning,” in Proc. 2009 IEEE Int. Conf.
Image Processing, Nov. 2009, pp. 773–776.

[19] D. Finchelstein, V. Sze, and A. Chandrakasan, “Multicore processing
and efficient on-chip caching for H.264 and future video decoders,”
IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 11, pp.
1704–1713, Nov. 2009.

[20] T. Tan, G. Sullivan, and T. Wedi, “VCEG-AE010: Recommended
simulation common conditions for coding efficiency experiments, rev.
1,” ITU-T Study Group 16 Question 6, Video Coding Experts Group
(VCEG), Jan. 2007.

[21] E. Fleming, C.-C. Lin, N. Dave, A. G. Raghavan, and J. Hicks, “H.264
decoder: A case study in multiple design points,” in Proc. Formal
Methods and Models for Co-Design (MEMOCODE), Jun. 2008, pp.
165–174.

[22] D. F. Finchelstein, V. Sze, M. E. Sinangil, Y. Koken, and A. P. Chan-
drakasan, “A low-power 0.7-V H.264 720 p video decoder,” in Proc.
2008 IEEE Asian Solid State Circuits Conf. (A-SSCC), Nov. 2008, pp.
173–176.

[23] J. Zhao and A. Segall, “COM16-C405: Entropy slices for parallel en-
tropy decoding,” ITU-T Study Group 16 Question 6, Video Coding
Experts Group (VCEG), Apr. 2008.

[24] C. Gordon, F. Henry, and S. Pateux, “JCTVC-F274: Wavefront par-
allel processing for HEVC encoding and decoding,” Joint Collabo-
rative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and
ISO/IEC JTC1/SC29/WG11, Jul. 2011.

[25] G. Clare, F. Henry, and S. Pateux, “JCTVC-F275:Wavefront and
CABAC flush: Different degrees of parallelism without transcoding,”
Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16
WP3 and ISO/IEC JTC1/SC29/WG11, Jul. 2011.

[26] G. Sullivan and J.-R. Ohm, “JCTVC-F_Notes_dA: Meeting report
of the sixth meeting of the joint collaborative team on video coding
(JCT-VC), Torino, IT, 14–22 July 2011,” Joint Collaborative Team
on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC
JTC1/SC29/WG11, Jul. 2011.

[27] V. Sze and A. P. Chandrakasan, “A highly parallel and scalable
CABAC decoder for next-generation video coding,” in 2011 IEEE Int.
Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2011, pp. 126–127.

[28] V. Sze, “Parallel algorithms and architectures for low power video de-
coding,” Ph.D. dissertation, Massachusetts Inst. Technol. (MIT), Cam-
bridge, MA, Jun. 2010.

Vivienne Sze (S’04–M’10) received the B.A.Sc.
(Hons) degree in electrical engineering from the
University of Toronto, Toronto, ON, Canada, in
2004, and the S.M. and Ph.D. degree in electrical
engineering from the Massachusetts Institute of
Technology (MIT), Cambridge, MA, in 2006 and
2010, respectively. She received the Jin-Au Kong
Outstanding Doctoral Thesis Prize, awarded for the
best Ph.D. thesis in electrical engineering in 2011.
Since September 2010, she has been a Member

of Technical Staff in the Systems and Applica-
tions R&D Center at Texas Instruments (TI), Dallas, TX, where she designs
low-power algorithms and architectures for video coding. She also represents
TI at the international JCT-VC standardization body developing HEVC, the
next generation video coding standard. Within the committee, she is the
primary coordinator of the core experiment on coefficient scanning and coding.
Dr. Sze was a recipient of the 2007 DAC/ISSCC Student Design Contest

Award and a co-recipient of the 2008 A-SSCC Outstanding Design Award. She
received the Natural Sciences and Engineering Research Council of Canada
(NSERC) Julie Payette fellowship in 2004, the NSERC Postgraduate Scholar-
ships in 2005 and 2007, and the Texas Instruments Graduate Woman’s Fellow-
ship for Leadership in Microelectronics in 2008.

22 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 47, NO. 1, JANUARY 2012

Anantha P. Chandrakasan (M’95–SM’01–F’04)
received the B.S., M.S., and Ph.D. degrees in elec-
trical engineering and computer sciences from the
University of California, Berkeley, in 1989, 1990,
and 1994, respectively.
Since September 1994, he has been with the Mass-

achusetts Institute of Technology, Cambridge, where
he is currently the Joseph F. and Nancy P. Keithley
Professor of Electrical Engineering. Since July 2011,
he has been the Head of the MIT EECS Department.
His research interests include micro-power digital

and mixed-signal integrated circuit design, wireless microsensor system design,
portable multimedia devices, energy efficient radios. and emerging technolo-
gies. He is a co-author of Low Power Digital CMOS Design (Kluwer Academic
Publishers, 1995), Digital Integrated Circuits (Pearson Prentice-Hall, 2003,
2nd edition), and Sub-threshold Design for Ultra-Low Power Systems (Springer
2006). He is also a co-editor of Low Power CMOS Design (IEEE Press, 1998),
Design of High-Performance Microprocessor Circuits (IEEE Press, 2000), and
Leakage in Nanometer CMOS Technologies (Springer, 2005).

Dr. Chandrakasan was a co-recipient of several awards including the 1993
IEEE Communications Society’s Best Tutorial Paper Award, the IEEE Electron
Devices Society’s 1997 Paul Rappaport Award for the Best Paper in an EDS
publication during 1997, the 1999 DAC Design Contest Award, the 2004 DAC/
ISSCC Student Design Contest Award, the 2007 ISSCC Beatrice Winner Award
for Editorial Excellence and the ISSCC Jack Kilby Award for Outstanding Stu-
dent Paper (2007, 2008, 2009). He received the 2009 Semiconductor Industry
Association (SIA) University Researcher Award. He has served as a technical
program co-chair for the 1997 International Symposium on Low Power Elec-
tronics and Design (ISLPED), VLSI Design’98, and the 1998 IEEE Workshop
on Signal Processing Systems. He was the Signal Processing Sub-committee
Chair for ISSCC 1999–2001, the Program Vice-Chair for ISSCC 2002, the Pro-
gram Chair for ISSCC 2003, the Technology Directions Sub-committee Chair
for ISSCC 2004–2009, and the Conference Chair for ISSCC 2010–2011. He
is the Conference Chair for ISSCC 2012. He was an Associate Editor for the
IEEE JOURNAL OF SOLID-STATE CIRCUITS from 1998 to 2001. He served on
SSCS AdCom from 2000 to 2007 and he was the meetings committee chair
from 2004 to 2007.

