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Abstract This paper uses joint algorithm and architec-
ture design to enable high coding efficiency in con-
junction with high processing speed and low area cost.
Specifically, it presents several optimizations that can
be performed on Context Adaptive Binary Arithmetic
Coding (CABAC), a form of entropy coding used in
H.264/AVC, to achieve the throughput necessary for
real-time low power high definition video coding. The
combination of syntax element partitions and inter-
leaved entropy slices, referred to as Massively Parallel
CABAC, increases the number of binary symbols that
can be processed in a cycle. Subinterval reordering
is used to reduce the cycle time required to process
each binary symbol. Under common conditions using
the JM12.0 software, the Massively Parallel CABAC,
increases the bins per cycle by 2.7 to 32.8× at a cost
of 0.25 to 6.84% coding loss compared with sequential
single slice H.264/AVC CABAC. It also provides a 2×
reduction in area cost, and reduces memory bandwidth.
Subinterval reordering reduces the critical path delay
by 14 to 22%, while modifications to context selec-
tion reduces the memory requirement by 67%. This
work demonstrates that accounting for implementation
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cost during video coding algorithms design can enable
higher processing speed and reduce hardware cost,
while still delivering high coding efficiency in the next
generation video coding standard.
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1 Introduction

Traditionally, the focus of video coding development
has been primarily on improving coding efficiency.
However, as processing speed requirements and area
cost continue to rise due to growing resolution and
frame rate demands, it is important to address the ar-
chitecture implications of the video coding algorithms.
In this paper, we will show that modifications to video
coding algorithms can provide speed up and reduce
area cost with minimal coding penalty. An increase
in processing speed can also translate into reduced
power consumption using voltage scaling, which is im-
portant given the number of video codecs that reside
on battery operated devices. The approach of jointly
optimizing both architecture and algorithm is demon-
strated on Context Adaptive Binary Arithmetic Cod-
ing (CABAC) [7], a form of entropy coding used in
H.264/AVC, which is a known throughput bottleneck
in the video codec, particularly at the decoder. These
optimizations render the algorithm non-standard com-
pliant and thus are well suited to be used in the next
generation video coding standards such as HEVC, the
successor to H.264/AVC. CABAC has been adopted
into the HEVC test model [15].
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Several joint algorithm and architecture optimiza-
tions of CABAC are proposed to enable parallelism
for increased throughput with minimal coding loss.
Specifically, three forms of parallelism will be exploited
which enable multiple arithmetic coding engines to run
in parallel as well as enable parallel operations within
the arithmetic coding engine itself. In addition, opti-
mizations are also discussed that reduce hardware area
and memory requirements.

This paper is organized as follows: Section 2 provides
an overview of CABAC. Section 3 describes exist-
ing approaches to addressing the CABAC bottleneck.
Section 4 describes how syntax element partitions and
interleaved entropy slices can enable multiple arith-
metic coding engines to run in parallel. Section 5
describes how subinterval reordering can enable par-
allel operations within the arithmetic coding engine.
Section 6 describes how memory requirements can be
reduced. Section 7 discusses the combined throughput
impact of all techniques described in this work. Finally,
Section 8 presents a summary of the benefits of the
proposed optimizations.

2 Overview of CABAC

Entropy coding delivers lossless compression at the last
stage of video encoding (and first stage of video de-
coding), after the video has been reduced to a series of
syntax elements (e.g. motion vectors, coefficients, etc).
Arithmetic coding is a type of entropy coding that can
achieve compression close to the entropy of a sequence
by effectively mapping the symbols (i.e. syntax ele-
ments) to codewords with non-integer number of bits.
In H.264/AVC, the CABAC provides better coding
efficiency than the Huffman-based Context Adaptive
Variable Length Coding (CAVLC) [7].

CABAC involves three main functions: binarization,
context modeling and arithmetic coding. Binarization
maps syntax element to binary symbols (bins). Context
modeling estimates the probability of the bins and
arithmetic coding compresses the bins to bits.

Arithmetic coding is based on recursive interval di-
vision; this recursive nature, contributes to the serial
nature of the CABAC. The size of the subintervals are
determined by multiplying the current interval by the
probability of the bin. At the encoder, a subinterval is
selected based on the value of the bin. The range and
lower bound of the interval are updated after every
selection. At the decoder, the value of the bin depends
on the location of the offset. The offset is a binary
fraction described by the encoded bits received at the
decoder.

Figure 1 Feedback loops in the CABAC decoder.

Context modeling is used to generate an estimate of
the bin’s probability. In order to achieve good compres-
sion efficiency, an accurate probability must be used to
code each bin. Accordingly, context modeling is highly
adaptive and one of 400+ contexts (probability models)
is selected depending on the type of syntax element,
binIdx, luma/chroma, neighboring information, etc. A
context switch can occur after each bin. Since the prob-
abilities are non-stationary, the contexts are updated
after each bin.

These data dependencies in CABAC result in tight
feedback loops, particularly at the decoder, as shown in
Fig. 1. Since the range and contexts are updated after
every bin, the feedback loops are tied to bins; thus, the
goal is to increase the overall bin-rate (bins per second)
of the CABAC. In this work, two approaches are used
to increase the bin-rate:

1. Running multiple arithmetic coding engines in par-
allel (increase bins per cycle);

2. Enabling parallel operations within the arithmetic
coding engine (increase cycles per second)

2.1 Throughput Requirements

Meeting throughput (bin-rate) requirements is critical
for real-timing decoding applications such as video con-
ferencing. To achieve real-time low-delay decoding, the
processing deadline is dictated by the time required
to decode each frame to achieve a certain frames per
second (fps) performance. Table 1 shows the peak bin-
rate requirements for a frame to be decoded instanta-
neously based on the specifications of the H.264/AVC
standard [8]. The bin-rates are calculated by multiply-
ing the maximum number of bins per frame by the
frame rate for the largest frame size. For Level 5.1, the
peak bin-rate is in the Gbins/s; without concurrency,
decoding 1 bin/cycle requires multi-GHz frequencies,
which leads to high power consumption and is difficult
to achieve even in an ASIC implementation. Existing
H.264/AVC CABAC hardware implementations such
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Table 1 Peak bin-rate requirements for real-time decoding of
worst case frame at various high definition levels.

Level Max Max bins Max Peak
frame per bit bin
rate picture rate rate

fps Mbins Mbits/sec Mbins/sec

3.1 30 4.0 17.5 121
3.2 60 4.0 25 242
4.0 30 9.2 25 275
4.1 30 17.6 50 527
4.2 60 17.6 50 1,116
5.0 72 17.6 169 1,261
5.1 26.7 17.6 300 2,107

as [3] only go up to 210 MHz (in 90-nm CMOS process);
the maximum frequency is limited by the critical path,
and thus parallelism is necessary to meet the next gen-
eration performance requirements.

3 Related Work

There are several methods of either reducing the
peak bin-rate requirement or increasing the bin-rate of
CABAC; however, they come at the cost of decreased
coding efficiency, increased power consumption and/or
increased latency. This section will discuss approaches
that are both H.264/AVC standard compliant and non-
compliant.

3.1 Standard Compliant Approaches

Workload averaging across frames can be used to re-
duce the bin-rate requirements to be within the range
of the maximum bit-rate at the cost of increased latency
and storage requirements. For low-delay applications
such as video conferencing, an additional delay of sev-
eral frames may not be tolerated. Frame buffering also
has implications on the memory bandwidth.

Bin parallelism is difficult to achieve due to the
discussed data dependencies in CABAC. H.264/AVC
CABAC implementations [2, 3, 16, 17] need to use
speculation to increase bins per cycle; however, spec-
ulative computations result in increased computations
and consequently increased power consumption. Fur-
thermore, the critical path delay increases with each
additional bin, since all computations cannot be done
entirely in parallel and thus the bin-rate increase
that can be achieved with speculative computations is
limited.

In H.264/AVC, frames can be broken into slices that
can be encoded and decoded completely independently
from each other. Parallelism can be applied at the slice

level since CABAC parameters such as range, offset
and context states are reset every slice. Each frame has
a minimum of one slice, so at the very least parallelism
can be achieved across several frames. However, frame
level parallelism leads to increased latency and needs
additional buffering, as inter-frame prediction prevents
several frames from being fully decoded in parallel.

The storage and delay costs can be reduced if
there are several slices per frame. However, increasing
the number of slices per frame reduces the coding
efficiency since it limits the number of macroblocks
that can be used for prediction, reduces the training
period for the probability estimation, and increases
the number of slice headers and start code prefixes.
Figure 2 shows how the coding penalty increases with
more H.264/AVC slices per frame.

3.2 Entropy Slices (Non-standard Compliant)

As shown in the previous section, increasing the perfor-
mance of the CABAC is challenging when constrained
by the H.264/AVC standard. An alternative is to mod-
ify the algorithm itself. In recent years, several new
CABAC algorithms have been developed that seek to
address this critical problem [5, 18, 19]. These algo-
rithms looked at various ways of using a new approach
called entropy slices to increase parallel processing
for CABAC. Entropy slices are similar to H.264/AVC
slices in that contiguous macroblocks are allocated to
different slices. However, unlike H.264/AVC slices,
which are completely independent of one another,
some dependency is allowed for entropy slices. While
entropy slices do not share information for entropy
(de)coding (to enable parallel processing), motion
vector reconstruction and intra prediction are al-
lowed across entropy slices, resulting in better coding
efficiency than H.264/AVC slices (Fig. 2). However,

Figure 2 Coding penalty versus slices per frame. Sequence big-
ships, QP=27, under common conditions [14].
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entropy slices still suffer coding loss relative to
H.264/AVC with single slice per frame. This penalty
can be attributed to a combination of three key sources:
no context selection across entropy slices, start code
and header for each entropy slice, and reduced context
training.

As described in Section 2, one of the features that
gives CABAC its high coding efficiency is that the con-
texts are adaptive. While encoding/decoding, the con-
texts undergo training to achieve an accurate estimate
of the syntax element probabilities. A better estimate
of the probabilities results in better coding efficiency.
A drawback of breaking up a picture into several en-
tropy slices is that there are fewer macroblocks, and
consequently fewer syntax elements, per slice. Since the
entropy engine is reset every entropy slice, the context
undergoes less training and can result in a poorer esti-
mate of the probabilities.

With ordered entropy slices, macroblocks are
processed in zig-zag order within a slice to mini-
mize memory bandwidth costs from syntax element
buffering [5]. Furthermore, it allows for context selec-
tion dependencies across entropy slices which improves
coding efficiency. However, the zig-zag order results
in increased latency and does not provide a favorable
memory access pattern necessary for effective caching.

4 Parallelism Across Arithmetic Coding Engines

In this section, we propose a parallel algorithm
called Massively Parallel CABAC (MP-CABAC) that
enables multiple arithmetic coding engines to run in
parallel with an improved tradeoff between coding
efficiency and throughput [9]. It can also be easily

implemented in hardware and with low area cost. The
MP-CABAC leverages a combination of two forms of
parallelism. First, it uses syntax element parallelism,
presented in Section 4.2, by simultaneously processing
different syntax element partitions, allowing the con-
text training to be performed across all instances of the
syntax element, thus improving the coding efficiency.
Second, macroblock/slice parallelism is achieved by
simultaneously processing interleaved entropy slices,
presented in Section 4.3, with simple synchronization
and minimal impact on coding efficiency. Note that the
MP-CABAC can also be combined with the bin paral-
lelism techniques previously described in Section 3.1.

4.1 Improving Tradeoffs

The goal of this work is to increase the throughput
of the CABAC at minimal cost to coding efficiency
and area. Thus, the various parallel CABAC ap-
proaches (H.264/AVC Slices, Entropy Slices, Ordered
Entropy Slices, MP-CABAC) are evaluated and com-
pared across two important metrics/tradeoffs:

– Coding Efficiency vs. Throughput
– Area Cost vs. Throughput

It should be noted that while throughput is correlated
with degree of parallelism, they are not equal. It de-
pends strongly on the workload balance between the
parallel engines. If the workload is not equally distrib-
uted, some engines will be idle, and the throughput
is reduced (i.e. N parallel hardware blocks will not
result in an Nx throughput increase). Thus, we chose
throughput as the target objective rather than degree
of parallelism.

Figure 3 Concurrency with
syntax element partitioning.
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Table 2 Syntax element partitions.

Group Syntax element

MBINFO mb_skip_flag, mb_type, sub_mb_type,
mb_field_decoded_flag, end_of_slice_flag

PRED prev_intra4×4_pred_mode_flag,
rem_intra4×4_pred_mode,
prev_intra8×8_pred_mode_flag,
rem_intra8×8_pred_mode,
intra_chroma_pred_mode,
ref_idx_l0, ref_idx_l1, mvd_l0, mvd_l1

CBP transform_size_8×8_flag, mb_qp_delta,
coded_block_pattern, coded_block_flag

SIGMAP significant_coeff_flag, last_significant_coeff_flag
COEFF coeff_abs_level_minus1, coeff_sign_flag

4.2 Syntax Element Partitions (SEP)

Syntax element partitions enables syntax elements to
be processed in parallel in order to avoid reducing the
training [13]. In other words, bins are grouped based
on syntax element and placed in different partitions
which are then processed in parallel (Fig. 3). As a result,
each partition contains all the bins of a given syntax
element, and the context can then undergo the max-
imum amount of training (i.e. across all occurrences
of the syntax element in the frame) to achieve the
best possible probability estimate and eliminate the
coding penalty from reduced training. Table 2 shows
the five different syntax element partitions. The syntax
elements were assigned to partitions based on the bin
distribution in order to achieve a balanced workload.
A start code prefix for demarcation is required at the
beginning of each partition in order to access them in
parallel.

4.2.1 Coding Ef f iciency and Throughput

The syntax element partitions approach was evaluated
using JM12.0 reference software provided by the Video
Coding Experts Group (VCEG) standards body, under
common conditions [14]. The coding efficiency and

throughput were compared against H.264/AVC slices
and entropy slices (Table 3). The coding efficiency
is measured with the Bjøntegaard �Bitrate (BD-rate)
[1]. To account for any workload imbalance, the par-
tition with the largest number of bins in a frame was
used to compute the throughput. An average through-
put speed up of ∼2.7× can be achieved with negligi-
ble impact (0.06 to 0.37%) on coding efficiency [13].
To achieve similar throughput requires at least three
H.264/AVC or entropy slices per frame which have
coding penalties of 0.87 to 1.71% and 0.25 to 0.69%
respectively. Thus, syntax element partitions provides 2
to 4× reduction in coding penalty relative to these other
approaches.

4.2.2 Area Cost

Implementations for parallel H.264/AVC slices and en-
tropy slices processing require that the entire CABAC
be replicated which can lead to significant area cost. An
important benefit to syntax element parallelism is that
the area cost is quite low since the FSM used for context
selection, and the context memory do not need to be
replicated. Only the arithmetic coding engine needs to
be replicated, which accounts for a small percentage of
the total area. FIFOs need to be included to synchro-
nize the partitions. Overall the SEP engine area is ap-
proximately 70% larger than the estimated H.264/AVC
CABAC area [12]. To achieve the throughput in
Table 3, H.264/AVC slices and entropy slices require
a 3× replication of the CABAC area, whereas syntax
element partitions only increase the area by 70%.

Note that the area cost for SEP may be even less
than 70% if we account for storage of the last line data.
If the last line data is stored in an on-chip cache, then
it also needs to be replicated for the H.264/AVC and
entropy slice approaches which results in significant
additional area cost. Alternatively, the last line data
can be stored off-chip but this will increase the off-chip
memory bandwidth. SEP does not require this cache to

Table 3 Comparison of various parallel processing techniques.

H.264/AVC slices Entropy slices Syntax element partitions

Area cost 3× 3× 1.7×
Prediction BD-rate Speed up BD-rate Speed up BD-rate Speed up
structure

Ionly 0.87 2.43 0.25 2.43 0.06 2.60
IPPP 1.44 2.42 0.55 2.44 0.32 2.72
IBBP 1.71 2.46 0.69 2.47 0.37 2.76

The coding efficiency was computed by evaluating the BD-rate against H.264/AVC with single slice per frame. The speed up was
computed relative to serial 1 bin/cycle decoding. The area cost was computed based on the increased gate count relative to a serial 1
bin/cycle CABAC.
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Figure 4 Macroblock allocation for entropy slices [5, 18, 19].

be replicated, which either reduces area cost or off-chip
memory bandwidth.

4.3 Interleaved Entropy Slices (IES)

To achieve additional throughput improvement, SEP
(as well as bin parallelism) can be combined with slice
parallelism such as entropy slices. As mentioned in
Section 3.2, entropy slices can undergo independent
entropy decoding in the ‘front-end’ of the decoder.
However, to achieve better coding efficiency than fully
independent slices (i.e. H.264/AVC slices), there re-
mains dependencies between the entropy slices for spa-
tial and motion vector prediction in the ‘back-end’ of
the decoder.

In the entropy slice proposals [5, 18, 19], the spatial
location of the macroblocks allocated to each entropy
slice is the same as in H.264/AVC (Fig. 4), i.e. contigu-
ous groups of macroblocks. Due to the existing depen-
dencies between entropy slices, back-end processing of
slice 1 in Fig. 4 cannot begin until the last line of slice
0 has been fully decoded when using regular entropy
slices. As a result, the decoded syntax elements of slice
1 need to be buffered as shown in Fig. 5, which increases
latency and adds to memory costs—on the order of
several hundred megabytes per second for HD. In this
work, we propose the use of interleaved entropy slices
where macroblocks are allocated as shown in Fig. 6,
i.e. for two slices, even rows are assigned to one slice,
while odd rows are assigned to the other [4]. Within

Figure 6 Macroblock allocation for interleaved entropy slices.

each slice, the raster scan order processing is retained.
Benefits of interleaved entropy slices include cross slice
context selection, simple synchronization, reduction in
memory bandwidth, low latency and improved work-
load balance.

In interleaved entropy slices, as long as the slice 0 is
one macroblock ahead of slice 1, the top-macroblock
dependency is retained, which enables cross slice con-
text selection during parallel processing (i.e. spatial
correlation can be utilized for better context selection)
resulting in improved coding efficiency [9]. This is not
possible with regular entropy slices.

Synchronization between entropy slices can easily
be implemented through the use of FIFO between the
slices (Fig. 7) [10]. Furthermore, both the front-end en-
tropy processing and the back-end prediction process-
ing can be done in this order (i.e. the entire decoder
path is parallelized), which allows the decoded syntax
elements to be immediately processed by the back-
end. Consequently, no buffering is required to store the
decoded syntax elements, which reduces memory costs.
This can have benefits in terms of reducing system
power and possibly improving performance (by avoid-
ing access conflicts in a shared memory). No buffering
also reduces latency which makes interleaved entropy
slices suitable for low latency applications (e.g. video
conferencing).

The number of accesses to the large last line buffer
is reduced for interleaved entropy slices [12]. In Fig. 6,
the last line buffer (which stores an entire macroblock

Figure 5 Decoded syntax
elements need to be buffered.
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Figure 7 Interleaved
Entropy Slices architecture
example for 2× parallel
decoding. Note that the entire
decode path can be
parallelized.

row) is only accessed by slice 0. Since slice 0 is only
several macroblocks ahead of slice 1, slice 1 only needs
to access a small cache, which stores only a few mac-
roblocks, for its last line (top) data. Thus out of N slices,
N-1 will access small FIFO for the last line data, and
only one will access the large last line buffer. If the last
line buffer is stored on-chip, interleaved entropy slices
reduce area cost since it does not need to be replicated
for every slice as with H.264/AVC and entropy slices.
Alternatively, if the last line buffer is stored off-chip,
the off-chip memory bandwidth for last line access is
reduced by 1/N. Note that the depth of the FIFO affects
how far ahead slice 0 can be relative to slice 1. A deeper
FIFO means that slice 0 is less likely to be stalled by
slice 1 due to a full FIFO. For instance, increasing
the FIFO depth from 4 to 8 macroblocks gives a 10%
increase in throughput. However, increasing the FIFO
depth also increases the area cost. Thus the depth of the
FIFO should be selected based on both the throughput
and area requirements.

Unlike ordered entropy slices, interleaved entropy
slices retains raster scan order processing within each
entropy slice which provides a favorable memory ac-
cess pattern for caching techniques that enable further
bandwidth reduction. Finally, in interleaved entropy
slices the number of bins per slice tends to be more
equally balanced; consequently, a higher throughput
can be achieved for the same amount of parallelism.
The concept of using IES to enable wavefront parallel
processing has been extended for HEVC in [6].

A video sequence should be encoded with a certain
number of IES based on the coding efficiency, through-
put and area requirements. A minimum number of
IES per frame should be included as part of the level
definition that determines the bin-rate throughput re-
quirement in order to ensure that the requirement can
be met at the decoder.

4.3.1 Coding Ef f iciency and Throughput

We measured the throughput of interleaved entropy
slice alone as well as in combination with syntax

element partitions, which we call the MP-CABAC.
Note that syntax element partitions can also be com-
bined with any of the other entropy slice approaches.
Figure 8 compares their coding efficiency and through-
put against regular and ordered entropy slices as well as
H.264/AVC slices. Table 4 shows the coding efficiency
across various sequences and prediction structures for
throughput increase (speed up) of around 10× over
serial 1 bin/cycle H.264/AVC CABAC. MP-CABAC
offers an overall average of 1.2×, 3.0×, and 4.1× coding
penalty (BD-rate) reduction compared with ordered
entropy slices, entropy slices, and H.264/AVC respec-
tively [9]. Data was obtained across different degrees
of parallelism and plotted in Fig. 8. The throughput
provided in Fig. 8 is averaged across five sequences,
prediction structures (Ionly, IPPP, IBBP) and QP (22,
27, 32, 37). The sequences were also coded in CAVLC
for comparison purposes; the coding penalty should not
exceed 16% since there would no longer be any coding
advantage of CABAC over CAVLC.

To account for any workload imbalance, the slice
with the largest number of bins in a frame was used
to compute the throughput. The BD-rates for entropy

Figure 8 Tradeoff between coding efficiency and throughput for
various parallel CABAC approaches.
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Table 4 A comparison of the coding efficiency penalty (BD-rate) versus throughput for parallel CABAC approaches.

H.264/AVC slices Entropy slices Ordered entropy IES only MP-CABAC
slices (IES + syntax

element partitioning)

Video BD-rate Speed up BD-rate Speed up BD-rate Speed up BD-rate Speed up BD-rate Speed up
sequence

Ionly Bigships 3.29 8.49 1.21 8.61 0.38 8.61 1.04 10.73 0.51 9.03
City 3.02 11.89 0.63 12.12 −0.01 12.12 0.81 10.28 0.43 8.88
Crew 8.47 9.29 2.05 9.48 0.24 9.48 1.80 9.32 0.97 10.24
Night 4.10 9.66 0.68 9.83 −0.09 9.83 0.62 10.65 0.37 9.62
Shuttle 7.55 8.80 1.97 9.17 0.84 9.17 3.34 9.58 1.81 11.42
Average 5.29 9.62 1.31 9.84 0.27 9.84 1.52 10.11 0.82 9.85

IPPP Bigships 5.65 9.95 5.69 10.31 2.01 10.31 2.37 9.91 1.91 9.77
City 9.01 10.67 4.86 11.69 1.27 11.69 2.19 9.93 1.99 9.73
Crew 10.00 10.01 12.96 10.63 8.49 10.63 2.34 9.91 1.90 10.07
Night 4.87 8.27 2.14 8.50 0.56 8.50 1.67 10.02 1.30 10.44
Shuttle 1.95 8.47 9.63 8.84 2.93 8.84 5.06 9.96 3.99 10.70
Average 8.09 9.48 7.06 9.99 3.05 9.99 2.72 9.95 2.22 10.14

IBBP Bigships 7.50 10.32 2.88 10.59 3.30 10.59 2.76 9.89 2.15 9.79
City 11.31 11.53 5.69 12.20 1.67 12.20 2.73 10.16 2.40 9.83
Crew 11.01 10.28 4.86 10.79 6.00 10.79 2.58 10.13 1.99 10.49
Night 5.50 8.51 12.96 8.72 1.91 8.72 2.27 10.13 1.61 11.14
Shuttle 13.36 8.99 13.41 9.23 5.94 9.23 5.68 10.09 4.68 10.39
Average 9.73 9.93 8.75 10.30 3.76 10.30 3.21 10.08 2.57 10.33

Speed up and BD-rates are measured against serial 1 bin/cycle one slice per frame H.264/AVC CABAC.

slices and ordered entropy slices are taken directly from
[5]. Since the macroblock allocation for these proposals
are the same, the workload imbalance should also be
the same. The workload imbalance was measured based
on simulations with JM12.0. The number of bins for
each macroblock and consequently each entropy slice
was determined and the throughput was calculated
from the entropy slice in each frame with the greatest
number of bins. Total number of bins processed by
MP-CABAC, interleaved entropy slices, entropy slices
and ordered entropy slices are the same; however, the

number of bins for the H.264/AVC slices increases
since the prediction modes and consequently syntax
elements are different; this impact is included in the
throughput calculations.

It should be noted that the coding efficiency val-
ues for entropy slices and ordered entropy slices
were obtained from implementations on top of the
KTA2.1 software, which includes next generation video
coding tools, while their throughput and the cod-
ing efficiency/throughput values of interleaved entropy
slices and MP-CABAC were obtained from implemen-

Figure 9 MP-CABAC data
structure. In this example,
there are four IES per frame
and five SEP per IES.
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Figure 10 Area cost versus throughput tradeoff for the various
parallel CABAC approaches.

tations on top of the JM12.0 software, which contains
only H.264/AVC tools. This accounts for the slight
discrepancy in coding efficiency between the ordered
entropy slices and interleaved entropy slices at 45×
parallelism (i.e. one slice per row of macroblocks). In
theory, they should be an exact match in terms of both
coding efficiency and throughput.

For interleaved entropy slices, the slice overhead,
due to the start code bits and the slice header, accounts
for a significant portion of the BD-rate penalty. Each
interleaved entropy slice has a 32-bit start code that
enables the decoder to access the start of each slice as
well as a slice header. In Table 4, 12 interleaved entropy
slices are used per frame in order to achieve a speed up
of around 10×. Given the fixed slice overhead, I only
encoded sequences experience less BD-rate penalty
than IPPP and IBBP since the slice data bits for I only is
more than IPPP which is more than IBBP. H.264/AVC
slices, entropy slices and ordered entropy slices have
a more imbalanced workload than interleaved entropy
slices, and therefore require 15 slices per frame to
achieve the same 10× speed up. This increases the fixed
slice overhead per frame. Note for slice parallelism

techniques, the balance of bins per slice is unaffected by
the prediction structure; thus all prediction structures
experience similar speed up improvements for a given
technique.

For MP-CABAC results in Table 4, interleaved en-
tropy slices and syntax element partitions are combined
in the same bitstream as shown in Fig. 9. Five syntax
elements partitions, each with a 32-bit start code, are
embedded in each interleaved entropy slices and the
slice header information, such as slice type (I, P, B),
slice quantization, etc., is inserted at the beginning of
the MBINFO partition. Four interleaved entropy slices,
each with 5 syntax element partitions, were used per
frame in order to achieve a speed up of around 10×.
Despite having more start code bits than that other
techniques, MP-CABAC has lower BD-rate penalty
due to improved context training of syntax element
partitions, enabling context selection across slices, and
fewer slice headers.

4.3.2 Area Cost

As in the case of the entropy slices and ordered entropy
slices, the area of the entire CABAC (including the
context memory) must be replicated for IES. Thus the
total CABAC area increases linearly with parallelism
as shown in Fig. 10. In Fig. 10 coding efficiency and
throughput are averaged across prediction structures,
sequences and quantization. Note that the area cost
versus throughput tradeoff for the entropy slices and
ordered entropy slices are the same since they have the
same throughput. For the same throughput, interleaved
entropy slices require less area increase since it needs
fewer parallel engines due to its better workload bal-
ance. Table 5 shows that for a 10× throughput increase
over serial 1 bin/cycle CABAC, interleaved entropy
slices reduced area cost by 20%, while MP-CABAC
reduces area cost by 60% relative to the other slice
approaches. Furthermore, no buffering is required to
store syntax elements and easy synchronization can be
performed with FIFO between the interleaved entropy

Table 5 A comparison
of features of parallel
CABAC approaches.

H.264/AVC Entropy Ordered IES only MP-CABAC
slices slices entropy (IES + syntax

slices element
partitioning)

Reference Anchor [19] [5] [9] [9]
Software JM12.0 KTA2.1 KTA2.1 JM12.0 JM12.0
Average BD-rate 7.7% 5.71% 2.36% 2.48% 1.87%
Area cost 15× 15× 15× 12× 6×
Context selection No No Yes Yes Yes

across entropy slices
Syntax element buffering No Yes No No No
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slices. The simplicity of this approach allows the whole
decoder to be parallelized. Note that a significant area
cost reduction is achieved for MP-CABAC, when inter-
leaved entropy slices are combined with syntax element
partitions. As mentioned earlier, if the last line buffer
is stored on-chip, IES provides additional area savings
since the buffer does not need to be replicated for every
slice [10, 12].

5 Parallelism Within Arithmetic Coding Engines

In this section, we propose an optimization that in-
creases parallel operations within the arithmetic coding
engine to reduce the critical path delay, increasing the
cycles per second that can be achieved by the CABAC
[11]. In the arithmetic decoder of H.264/AVC CABAC,
the interval is divided into two subintervals based on
the probabilities of the least probable symbol (LPS)
and most probable symbol (MPS). The range of MPS
(rMPS) is compared to the offset to determine whether
the bin is MPS or LPS. rMPS is computed by first
obtaining range of LPS (rLPS) from a 64 × 4 LUT
(using bits [7:6] of the current 9-bit range and the 6-bit
probability state from the context) and then subtracting
it from the current range. Depending on whether an
LPS or MPS is decoded, the range is updated with their
respective subintervals. To summarize, the interval di-
vision steps in the arithmetic decoder are

1. Obtain rLPS from the 64 × 4 LUT;
2. Compute rMPS by subtracting rLPS from current

range;
3. Compare rMPS with offset for bin decoding

decision;
4. Update range based on bin decision.

If the offset was compared to rLPS rather than
rMPS, then the comparison and subtraction to compute

rMPS can occur in parallel. Furthermore, the updated
offset is computed by subtracting rLPS from offset
rather than rMPS. Since rLPS is available before rMPS,
this subtraction can also be done in parallel with range-
offset comparison. Figure 11 shows the difference be-
tween the subinterval order of H.264/AVC CABAC
and subinterval reordering. The two orderings of the
subintervals are mathematically equivalent in arith-
metic coding; thus changing the order has no impact
on coding efficiency. This was verified with simulations
of the modified JM12.0 under common conditions. An
arithmetic decoder was also implemented in RTL for
each subinterval ordering and synthesized to obtain
their area-delay trade-off in a 45-nm CMOS process.
For the same area, subinterval reordering reduces the
critical path delay by 14 to 22%.

Subinterval reordering has similar benefits for the
arithmetic encoder of H.264/AVC CABAC. Rather
than comparing offset to rLPS or rMPS, the bin to be
encoded is compared to MPS. Depending on whether
the bin equals MPS, the range is updated accordingly.
Reversing the order of subintervals allows the bin-
MPS comparison to occur in parallel with the rMPS
subtraction in the CABAC encoder as shown in Fig. 12.
The lower bound can also be updated earlier since it
depends on rLPS rather than rMPS.

6 Reduction in Memory Requirement

To leverage spatial correlation of neighboring data,
context selection can depend on the values of the top
and left blocks as shown in Fig. 13. The top dependency
requires a line buffer in the CABAC engine to store
information pertaining to the previously decoded row.
The depth of this buffer depends on the width of the
frame being decoded which can be quite large for high
resolution sequences. The bit-width of the buffer de-

Figure 11 Impact of
subinterval reordering for
CABAC decoding.
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Figure 12 Impact of
subinterval reordering for
CABAC encoding.

pends on the type of information that needs to be stored
per block or macroblock in the previous row. Table 6
shows the bits required to be stored in the line buffer
for context selection when processing a 4,096 pixel wide
video sequence. We propose reducing the bit-width of
this data to reduce the overall line buffer size of the
CABAC.

Majority of the data stored in the line buffer is for
the context selection of mvd. mvd is used to reduce the
number of bits required to represent motion informa-
tion. Rather than transmitting the motion vector, the
motion vector is predicted from its neighboring 4 × 4
blocks and only the difference between motion vector
prediction (mvp) and motion vector (mv), referred to
as mvd, is transmitted.

mvd = mv − mvp

A separate mvd is transmitted for the vertical and
horizontal components. The context selection of mvd
depends on neighbors A and B as shown in Fig. 13.

In H.264/AVC, neighboring information is incorpo-
rated into the context selection by adding a context
index increment (between 0 to 2 for mvd) to the cal-
culation of the context index. The mvd context index
increment, χmvd, is computed in two steps [7]:

Step 1: Sum the absolute value of neighboring mvd

e(A,B,cmp)=|mvd(A,cmp)|+|mvd(B,cmp)|
where A and B represent the left and top
neighbor and cmp indicates whether it is a
vertical or horizontal component.

Step 2: Compare e(A,B,cmp) to thresholds of 3
and 32

χmvd(cmp) =

⎧
⎪⎨

⎪⎩

0, if e(A,B,cmp) < 3
1, if 3 ≤ e(A,B,cmp) ≤ 32
2, if e(A,B,cmp) > 32

Since the upper threshold is 32, a minimum of
6-bits of the mvd has to be stored per component per
4 × 4 block in the line buffer. For 4 k × 2 k, there are
(4,096/4) = 1,024 4 × 4 blocks per row, which implies
6 × 2 × 2× 1,024 = 24,576 bits are required for mvd
storage.

To reduce the memory size, we propose performing
comparisons for each component before summing their
results. In other words,

Step 1: Compare components of mvd to a threshold

threshA(cmp) = |mvd(A,cmp)| > 16
threshB(cmp) = |mvd(B,cmp)| > 16

Step 2: Sum results threshA and threshB from Step 1

χmvd(cmp) = threshA(cmp) + threshB(cmp)

With this change, only single bit is required to be
stored per component per 4 × 4 block; the size of the
line buffer for mvd is reduced to 1 × 2 × 2× 1,024 =
4,096 bits. In H.264/AVC, the overall line buffer size
of the CABAC required for all syntax elements is
30,720 bits. The modified mvd context selection reduces
the memory size by 67%, from 30,720 bits to 10,240 bits
as shown in Table 6. The average coding penalty of this
approach, was verified across common conditions to be
≤0.02%.

Figure 13 For position X, context selection is dependent on A
and B (4 × 4 blocks for mvd); a line buffer is required to store the
previous row of decoded data.
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Table 6 Context selection line buffer storage requirements for a 4,096 pixel wide video sequence.

Syntax element (SE) Frequency SE/ Bits/ Bits for Bits/ Bits for
of macroblock SE 4 k × 2 k SE 4 k × 2 k
signaling (H.264/AVC) (H.264/AVC) (proposed) (proposed)

mb_type Per MB 1 1 256 1 256
mb_skip_flag Per MB 1 1 256 1 256
refIdx_l0 Per 8 × 8 2 1 512 1 512
refIdx_l1 Per 8 × 8 2 1 512 1 512
mvd_l0 (vertical) Per 4 × 4 4 6 6,144 1 1,024
mvd_l0 (horizontal) Per 4 × 4 4 6 6,144 1 1,024
mvd_l1 (vertical) Per 4 × 4 4 6 6,144 1 1,024
mvd_l1 (horizontal) Per 4 × 4 4 6 6,144 1 1,024
intra_chroma_pred_mode Per MB 1 1 256 1 256
intra_16×16 Per MB 1 1 256 1 256
coded_block_flag (luma DC) Per MB 1 1 256 1 256
coded_block_flag (luma) Per 4 × 4 4 1 1,024 1 1,024
coded_block_flag (chroma DC) Per 8 × 8 2 1 512 1 512
coded_block_flag (chroma) Per 4 × 4 4 1 1,024 1 1,024
coded_block_pattern (luma) Per 8 × 8 2 1 512 1 512
coded_block_pattern (chroma) Per 8 × 8 2 1 512 1 512
transform_8×8_mode_flag Per MB 1 1 256 1 256
Total 30,720 10,240

7 Overall Impact

Three forms of parallelism have been presented in this
work. First, syntax element partitions which enables
processing different syntax elements in parallel. Sec-
ond, interleaved entropy slices which enables process-
ing slices in parallel. Finally, subinterval reordering
enables parallel operations within the arithmetic coding
engine. Figure 14 shows how all techniques are inte-
grated together. The slices engines are connected using
FIFOs to process IES in parallel. Each slice engine con-
tains five arithmetic decoder (AD) to process the five
SEP in parallel. Note that IES FIFOs only need to
connect AD for MBINFO, PRED and CBP since only
syntax elements in those partitions use top macroblock
information for context selection. The last line buffer
can be viewed as a large FIFO that connects slice engine
0 and 3. This can be stored on-chip (increases area
cost) or off-chip (increases memory bandwidth). Within
these AD, subinterval reordering has been applied to
enable parallel operations that speed up the overall
throughput.

Both syntax element partitions and interleaved en-
tropy slices increase the number of bins processed per
cycle. Their impact on throughput varies depending
on the properties of a video sequence which affect
the balance of bins across slices. For instance, with
two interleaved entropy slices per frame, the BigShips
sequence, encoded using a QP=32 with IBBP achieves
a 5.94× throughput increase with a bit-rate increase
of 1.3%; the ShuttleLaunch sequence, encoded using a

QP=32 with IBBP achieves 5.02× throughput increase
with a bit-rate increase of 2.3%.

In contrast, subinterval reordering reduces the crit-
ical path of arithmetic coding engine which provides
throughput increase across all video sequences. For
example, a given area cost in a 45-nm CMOS process,
a H.264/AVC CABAC arithmetic coding engine can
run at 270 MHz, whereas using subinterval reordering,
the arithmetic coding engine can run at 313 MHz. This

Figure 14 Overall architecture to support multiple forms of
parallelism presented in this work.



J Sign Process Syst (2012) 69:239–252 251

16% increase in frequency translates to an increase in
throughput for all sequences.

The overall throughput is calculated as follows:

bin-rate = bins/cycle × cycles/second

Thus, subinterval reordering has an added throughput
impact on top of the IES and SEP approaches. As-
suming a initial serial H.264/AVC CABAC of one bin
per cycle, which has a throughput of 270 Mbins/s, the
techniques presented in this paper could increase the
throughput to process BigShips by 5.94 × (313/270) =
6.9× for a bin-rate of 1,859 Mbins/s. Similarly, through-
put to process ShuttleLaunch is increased by 5.02 ×
(313/270) = 5.8× for a bin-rate of 1,571 Mbins/s. Since
subinterval reordering has negligible impact on coding
efficiency, the coding loss would remain as 1.3 and 2.3%
respectively, as described earlier.

8 Summary and Conclusions

In this work, several joint algorithm and architecture
optimizations were proposed for CABAC tob increase
throughput with minimal coding efficiency cost. Par-
allelism is achieved across multiple arithmetic coding
engines to increase bins per cycle as well as within the
arithmetic coding engine to increase cycles per second
for an overall increase in bin-rate (bins per second).

MP-CABAC provides syntax element and slice paral-
lelism across arithmetic coding engines. MP-CABAC
involved reorganizing the data (syntax elements) in an
encoded bitstream such that the bins (workload) can be
distributed across different parallel processors and mul-
tiple bins can be decoded simultaneously without signif-
icant increase in coding penalty and implementation cost.

Benefits of the MP-CABAC include

1. High throughput;
2. Low area cost;
3. Good coding efficiency;
4. Reduced memory bandwidth;
5. Simple synchronization and implementation;
6. Low latency;
7. enables full decoder parallelism

For a 2.7× increase in throughput, syntax element
partitions were shown to provide between 2 to 4× re-
duction in coding penalty when compared to slice par-
allel approaches, and close to 2× reduction in area cost.
When combined with interleaved entropy slices to form
the MP-CABAC, additional throughput improvement
can be achieved with low coding penalty and area cost.
For a 10× increase in throughput, the coding penalty
was reduced by 1.2×, 3× and 4× relative to ordered

entropy, entropy and H.264/AVC slices respectively.
Over a 2× reduction in area cost was achieved.

Additional optimizations within the arithmetic cod-
ing engine using subinterval reordering increases
processing speed by 14 to 22% with no coding penalty.
Finally, to address memory requirement, the context
selection can be modified to reduce memory size by
67% with negligible coding efficiency impact (≤0.02%).
Details on an implementation of the MP-CABAC with
these optimizations can be found in [10, 12].

This work demonstrates the benefits of accounting
for implementation cost when designing video coding
algorithms. We recommend that this approach be ex-
tended to the rest of the video codec to maximize
processing speed and minimize area cost, while deliver-
ing high coding efficiency in the next generation video
coding standard.
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