
JOINT ALGORITHM-ARCHITECTURE OPTIMIZATION OF CABAC TO INCREASE SPEED
AND REDUCE AREA COST

Vivienne Sze, Anantha P. Chandrakasan
Massachusetts Institute of Technology

ABSTRACT

To address the increasing demand for higher resolution and
frame rates, processing speed (i.e. performance) and area cost
need to be considered in the development of next genera-
tion video coding. Accordingly, both algorithm and architec-
ture should be taken into account during video codec design.
This paper proposes joint optimization of both the algorithm
and architecture to ensure that high coding efficiency can be
achieved in conjunction with high processing speed and low
area cost. Specifically, it presents two optimizations that can
be performed on Context-based Adaptive Binary Arithmetic
Coding (CABAC), a form of entropy coding in H.264/AVC.
First, subinterval reordering is proposed for the arithmetic de-
coder to increase the processing speed by 14 to 22% with no
cost to coding efficiency. Second, modification of the motion
vector difference (mvd) context selection is proposed to re-
duce memory requirements (i.e. area cost) by 50% with neg-
ligible coding efficiency impact (≤0.02%). These joint algo-
rithm and architecture optimizations are non-standard com-
pliant and thus are well suited to be used in High Efficiency
Video Coding (HEVC), the successor to H.264/AVC.

Index Terms— Arithmetic Coding, Video Coding, Ar-
chitecture

1. INTRODUCTION

Traditionally, the focus of video coding development has
been primarily on improving coding efficiency. However,
as processing speed requirements and area cost continue to
rise due to growing resolution and frame rate demands, it
is important to address the architecture implications of the
video coding algorithms. In this paper, we will show that
modifications to video coding algorithms can provide speed
up and reduce area cost with little to no effect on the coding
efficiency. An increase in processing speed (i.e. perfor-
mance) can also translate into reduced power consumption
using voltage scaling, which is important given the number
of video codecs that reside on battery operated devices. The
approach of jointly optimizing both architecture and algo-
rithm is demonstrated on Context-based Adaptive Binary

Funding for this research was provided by Texas Instruments and an
NSERC fellowship. The authors would like to thank Madhukar Budagavi
for valuable feedback and discussions. The authors are with the Microsys-
tems Technology Laboratories, Massachusetts Institute of Technology, Cam-
bridge, MA 02139 USA (e-mail: sze@alum.mit.edu; anantha@mtl.mit.edu)

Arithmetic Coding (CABAC), a form of entropy coding in
H.264/AVC, which is a known performance bottleneck in the
video codec, particularly the decoder. These optimizations
render the algorithm non-standard compliant and thus are
well suited to be used in the next generation video coding
standard High Efficiency Video Coding (HEVC), the succes-
sor to H.264/AVC. CABAC has been adopted into the HEVC
test model [1].

2. OVERVIEW OF CABAC

Entropy coding delivers lossless compression at the last stage
of video encoding (and first stage of video decoding), af-
ter the video has been reduced to a series of syntax ele-
ments. Arithmetic coding is a type of entropy coding that
can achieve compression close to the entropy of a sequence
by effectively mapping the symbols (i.e. syntax elements) to
codewords with non-integer number of bits. In H.264/AVC,
the CABAC provides a 9 to 14% improvement over the
Huffman-based Context-based Adaptive Variable Length
Coding (CAVLC) [2].
CABAC involves three main functions: binarization, con-

text modeling and arithmetic coding. Binarization maps syn-
tax element to binary symbols (bins). Context modeling esti-
mates the probability of the bins and arithmetic coding com-
presses the bins. This paper focuses on reducing the critical
path delay of the arithmetic coding engine as well as reducing
the area cost of context modeling.

2.1. Arithmetic Coding

Arithmetic coding is based on recursive interval division. Bi-
nary arithmetic coding refers to the case where the alpha-
bet of the symbol is restricted to zero and one (i.e. binary
symbols (bins)). The size of the subintervals are determined
by multiplying the current interval by the probabilities of the
bin. At the encoder, a subinterval is selected based on the
value of the bin. The range and lower bound of the interval
are updated after every selection. At the decoder, the value
of the bin depends on the location of the offset. The offset
is a binary fraction described by the encoded bits received at
the decoder. The range and lower bound of the current inter-
val have limited bit-precision, so renormalization is required
whenever the range falls below a certain value to prevent un-
derflow. Fig. 1 shows a flowchart of the arithmetic decoder.

1577978-1-4577-0539-7/11/$26.00 ©2011 IEEE ICASSP 2011

rLPS=LUT(state,range[7:6])

rMPS=range-rLPS

offset>=

rMPS

bin=!MPS

offset=offset-rMPS

range=rLPS

state

==0?

MPS=1-MPS

state=LUT(state)

Renormalize

bin=MPS

state=LUT(state)

range=rMPS

Yes No

No

Yes

state, MPS, range, offset

renorm_range, renorm_offset,

updated_state, updated_MPS

updated_range,

updated_offset

Fig. 1: Flowchart of binary arithmetic decoder in H.264/AVC
CABAC [4].

The CABAC engine used in H.264/AVC leverages a mod-
ulo coder (M coder) to calculate the range of a subinterval
based on the product of the current range and the probability
of the bin. The M coder involves using a look up table (LUT)
rather than a true multiplier to reduce implementation com-
plexity [3].
The arithmetic coding engine typically contains the crit-

ical path in H.264/AVC CABAC. Section 3.1 will discuss
various optimizations that can be used to reduce the delay of
this critical path.

2.2. Context Modeling

In order to achieve optimal compression efficiency, an ac-
curate probability must be used to code each bin. For High
profile in H.264/AVC, CABAC uses over 400 different prob-
ability models to achieve the significant coding gains over
CAVLC. All bins of the same type (i.e. with the same proba-
bility distribution and characteristics) are grouped together in
a context and use the same model. Accordingly, the context
of a bin dictates the probability with which it is coded.
Since distributions in neighboring macroblocks are cor-

related, the value of the syntax elements of the macroblocks
(or blocks) located to the top and left impact the context se-
lection. For instance, bins of motion vector difference (mvd)
syntax elements that have neighbors with large mvds, use the
same context. Using information from the top and left neigh-
bor requires additional memory. Section 3.2 will describes
how to reduce the memory size and consequently the area cost
of context modeling.

3. JOINT ALGORITHM-ARCHITECTURE
OPTIMIZATIONS

Two joint algorithm and architecture optimizations are pre-
sented which increase the speed and reduce the area cost
of CABAC. The optimizations were implemented on the
H.264/AVC reference software [5] and HEVC test model [6]
to measure their coding efficiency impact under common con-
ditions specified by the Video Coding Experts Group (VCEG)
[7] and Joint Collaborative Team on Video Coding (JCT-
VC) [8] standards bodies, respectively.

3.1. Subinterval Reordering to increase speed

In the arithmetic decoder of H.264/AVC CABAC, the inter-
val is divided into two subintervals based on the probabili-
ties of the least probable symbol (LPS) and most probable
symbol (MPS). The range of the MPS subinterval (rMPS) is
compared to the offset to determine whether the bin is MPS
or LPS. rMPS is computed by first obtaining range of the
LPS subinterval (rLPS) from a 64x4 LUT (using bits [7:6] of
the current 9-bit range and the 6-bit probability state from the
context) and then subtracting it from the current range. De-
pending on whether an LPS or MPS is decoded, the range is
updated with their respective subintervals. To summarize, the
interval division steps in the arithmetic decoder are

1. obtain rLPS from the 64x4 LUT

2. compute rMPS by subtracting rLPS from current range

3. compare rMPS with offset for bin decoding decision

4. update range based on bin decision.

If the offset was compared to rLPS rather than rMPS, then
the comparison and subtraction to compute rMPS can occur
at the same time. Furthermore, the updated offset is computed
by subtracting rLPS from offset rather than rMPS. Since rLPS
is available before rMPS, this subtraction can also be done in
parallel with range-offset comparison. Fig. 2 shows the dif-
ference between the subinterval order of H.246/AVC CABAC
and subinterval reordering. The two orderings of the subin-
tervals are mathematically equivalent in arithmetic coding;
thus changing the order has no impact on coding efficiency.
This was verified with simulations of the modified reference
software and test model under common conditions [7, 8]. An
arithmetic decoder was implemented in RTL for each subin-
terval ordering. Both implementations were synthesized to
obtain their area-delay trade-off in a 45-nm CMOS process.
For the same area, subinterval reordering reduces the critical
path delay by 14 to 22%.
Subinterval reordering has similar benefits for the arith-

metic encoder of H.264/AVC CABAC. Rather than compar-
ing offset to rLPS or rMPS, the bin to be encoded is compared
toMPS. Depending on whether the bin equals MPS, the range

1578

rLPS = LUT(state, range[7:6])

rMPS = range - rLPS

range = rLPS

offset = offset-rMPS

range = rMPS

offset = offset

Yes No

offset ≥ rMPS

rMPS rLPS

0 rMPS

rMPSrLPS

0 rLPS

Subinterval ReorderingH.264/AVC switch

subinterval

order

rLPS = LUT(state, range[7:6])

rMPS = range - rLPS

offset = offset - rLPS
No Yes

offset ≥ rLPS

range = rLPS

offset = offset
range = rMPS

range range

Fig. 2: Impact of subinterval reordering for CABAC decoding.

is updated accordingly. Reversing the order of subintervals
allows the bin-MPS comparison to occur in parallel with the
rMPS subtraction in the CABAC encoder as shown in Fig. 3.
The lower bound can also be updated earlier since it depends
on rLPS rather than rMPS.

3.2. Modified mvd Context Selection to reduce area cost

To make use of the spatial correlation of neighboring data,
context selection can depend on the values of the top and left
blocks as shown in Fig. 4. Consequently, a line buffer is re-
quired in the CABAC engine to store information pertaining
to the previously decoded row. The depth of this buffer de-
pends on the width of the frame being decoded which can be
quite large for high resolution (e.g. 4kx2k) sequences. The
bit-width of the buffer depends on the type of information
that needs to be stored per block or macroblock in the pre-
vious row. We propose reducing the bit-width of this data to
reduce the overall line buffer size of the CABAC.
Specifically, we propose modifying the context selection

for motion vector difference (mvd). mvd is used to reduce
the number of bits required to represent motion information.
Rather than transmitting the motion vector, the motion vector
is predicted from its neighboring 4x4 blocks and only the dif-
ference between motion vector prediction (mvp) and motion
vector (mv), referred to as mvd, is transmitted.

mvd = mv - mvp

A separate mvd is transmitted for the vertical and horizontal
components. The context selection of mvd depends on neigh-
bors A and B as shown in Fig. 4.
In H.264/AVC, neighboring information is incorporated

into the context selection by adding a context index increment
(between 0 to 2 for mvd) to the calculation of the context in-
dex. The mvd context index increment, χmvd, is computed in
two steps [2]:
Step 1: Sum the absolute value of neighboring mvds

e(A,B,cmp)=|mvd(A,cmp)|+|mvd(B,cmp)|

where A and B represent the left and top neighbor and cmp
indicates whether it is a vertical or horizontal component.

Step 2: Compare e(A,B,cmp) to thresholds of 3 and 32

χmvd(cmp) =

⎧⎨
⎩

0, if e(A,B,cmp)<3
1, if 3≤e(A,B,cmp)≤32
2, if e(A,B,cmp)>32

Fig. 5a illustrates how the above equation maps the mvd of
A and B to different χmvd. In a given slice, all blocks sur-
rounded by large mvds will use the same probability model
(χmvd=2). Blocks surrounded by small mvds will use another
probability model (χmvd=0 or χmvd=1).
With the upper threshold set to 32, a minimum of 6-bits

of the mvd has to be stored per component per 4x4 block in
the line buffer. For 4kx2k, there are (4096/4) =1024 4x4
blocks per row, which implies 6×2×1024 = 12,228 bits are
required for mvd storage.
To reduce the memory size, rather than summing the com-

ponents and then comparing to a threshold, we propose sepa-
rately comparing each component to a threshold and summing
their results. In other words,
Step 1: Compare the components of mvd to a threshold

threshA(cmp)=|mvd(A,cmp)| >16
threshB(cmp)=|mvd(B,cmp)| >16

Step 2: Sum the results threshA and threshB from Step 1

χmvd(cmp)=threshA(cmp)+threshB(cmp)

Fig. 5b illustrates how the above equation maps themvd of
A and B to different χmvd. A single threshold of 16 is used.
Consequently, only a single bit is required to be stored per
component per 4x4 block; the size of the line buffer for mvd
is reduced to 1 × 2 × 1024 =2,048 bits. In H.264/AVC, the
overall line buffer size of the CABAC required for all syntax
elements is 20,480 bits. The modified mvd context selection
reduces the memory size by 50%, from 20,480 bits to 10,240
bits. The average coding penalty of this approach, measured
using BD-rate [9], was verified across common conditions to
be 0.02% for H.264/AVC and 0% in the HEVC test model
(Table 1).

1579

rLPS = LUT(state, range[7:6])

rMPS = range - rLPS

range = rMPS

low = low

range=rLPS

low = low+rMPS

No Yes

bin != MPS

rMPS rLPS

low rMPS

rMPSrLPS

low rLPS

Subinterval ReorderingH.264/AVC switch

subinterval

order

rLPS = LUT(state, range[7:6])

rMPS = range - rLPS

low = low+rLPS
No Yes

bin = MPS

range = rLPS

low = low
range = rMPS

range range

Fig. 3: Impact of subinterval reordering for CABAC encoding.

A

B

X

Fig. 4: For position X, context selection is dependent on A
and B (4x4 blocks for mvd); a line buffer required to store the
previous row of decoded data.

0
1

2

3

32

mvd of A

mvd of B

(a) H.264/AVC CABAC

2

16

16

2

22

1

1

1

0
1

mvd of A

mvd of B

(b) 1-bit per component per 4x4.

Fig. 5: Context increments χmvd for different mvd in top (A)
and left (B) neighboring 4x4 blocks.

Table 1: Coding penalty due to modification of mvd context se-
lection. Measured using Bjontegaard ΔBitrate against H.264/AVC
(JM12.0) and HEVC test model (HM2.0). Results are averaged
across sequences defined in the common conditions.

(%) Intra Low Delay Random Access
JM12.0 0.00 0.02 0.02
HM2.0 0.00 0.00 0.00

4. CONCLUSION

This paper presents two joint algorithm and architecture op-
timizations of the CABAC engine that increase processing
speed by 14 to 22% and reduce memory size by 50% with
negligible coding efficiency impact (≤0.02%). It demon-
strates the benefits of accounting for implementation cost
when designing video coding algorithms. We recommend
that this approach be extended to the rest of the video codec
to maximize processing speed and minimize area cost, while
delivering high coding efficiency in the next generation video
coding standard.

5. REFERENCES

[1] T. K. Tan, G. Sullivan, and J.-R. Ohm, “JCTVC-C405: Summary of
HEVC working draft 1 and HEVC test model (HM),” Oct. 2010.

[2] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive binary
arithmetic coding in the H.264/AVC video compression standard,” IEEE
Trans. on CSVT, vol. 13, no. 7, pp. 620– 636, July 2003.

[3] D. Marpe and T. Wiegand, “A highly efficient multiplication-free binary
arithmetic coder and its application in video coding,” in IEEE Inter.
Conf. on Image Processing,, Sept. 2003, vol. 2, pp. II – 263–6 vol.3.

[4] “Recommendation ITU-T H.264: Advanced Video Coding for Generic
Audiovisual Services,” Tech. Rep., ITU-T, 2003.

[5] “H.264/AVC Reference Software, JM 12.0,”
http://iphome.hhi.de/suehring/tml/.

[6] “HEVC Test Model, HM 2.0,”
https://hevc.hhi.fraunhofer.de/svn/svn HEVCSoftware/tags/HM-2.0/.

[7] T.K. Tan, G. Sullivan, and T. Wedi, “VCEG-AE010: Recommended
Simulation Common Conditions for Coding Efficiency Experiments
Rev. 1,” Jan. 2007.

[8] F. Bossen, “JCTVC-D600: Common test conditions and software refer-
ence configurations,” Jan. 2011.

[9] G. Bjøntegaard, “VCEG-M33: Calculation of Average PSNR Differ-
ences between RD curves,” April 2001.

1580

