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Abstract—This paper focuses on motion estimation engine de-
sign in future high-efficiency video coding (HEVC) encoders. First,
a methodology is explained to analyze hardware implementation
cost in terms of hardware area, memory size and memory band-
width for various possible motion estimation engine designs. For
11 different configurations, hardware cost as well as the coding ef-
ficiency are quantified and are compared through a graphical anal-
ysis to make design decisions. It has been shown that using smaller
block sizes (e.g. 4 4) imposes significantly larger hardware re-
quirements at the expense of modest improvements in coding effi-
ciency. Secondly, based on the analysis on various configurations,
one configuration is chosen and algorithm improvements are pre-
sented to further reduce hardware implementation cost of the se-
lected configuration. Overall, the proposed changes provide 56
on-chip bandwidth, 151 off-chip bandwidth, 4.3 core area and
4.5 on-chip memory area savings when compared to the hard-
ware implementation of the HM-3.0 design.

Index Terms—Hardware implementation cost, HEVC, motion
estimation, search algorithm.

I. INTRODUCTION

D URING the past decade, the amount of video content
available on the Internet has grown significantly. With

the introduction of 3 G/4 G mobile broadband technology,
consumers can access this content from their mobile devices.
Hence, by 2015, 70% of the mobile data traffic is expected to be
attributed to video content [1]. In this context, standards with
high coding efficiency are crucial for lowering transmission
and storage costs.
Recent video coding standards such as AVC/H.264 provided

significant coding efficiency gain over their predecessors. For
example, AVC/H.264 provided 50% coding efficiency gain over
MPEG-2 [2]. However, this improvement comes at the expense
of higher hardware cost due to more complex coding tools as
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Fig. 1. Relative complexity of video core over the years for a mobile applica-
tions processor [3]. From 2012 to 2020, video core complexity is expected to
increase by 10 .

TABLE I
COMPARISON OF SOME TOOLS IN AVC/H.264 HIGH PROFILE AND NEXT
GENERATION VIDEO STANDARD, HEVC. MORE COMPLEX HEVC

TOOLS REQUIRE MORE COMPLEX HARDWARE

AVC/H.264 has 4 more hardware complexity with respect
to MPEG-2 [2]. The trend for increasing hardware complexity
over the years can be seen in Fig. 1 where relative complexity
of the video core of a mobile applications processor is plotted
over the years from 2004 to 2020 [3]. This figure reflects the
increased complexity due to
• more advanced video coding standards and
• the necessity to employ a more dedicated hardware

to meet performance requirements.
By the year 2020, the complexity of a video core is expected

to be 10 larger than today’s demands [3]. Consequently, it is
very critical to consider the hardware implementation cost in
terms of hardware area, memory area (based on the capacity and
the type of the memory) and memory bandwidth (rate at which
data is accessed) of video codecs especially for mobile devices.

1932-4553 © 2013 IEEE
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TABLE II
COMPARISON OF PREVIOUSLY PUBLISHED ENCODER CHIPS. ME AREA IS A SIGNIFICANT PORTION

OF TOTAL CHIP AREA MAKING ME A CRITICAL PART OF THE ENCODER DESIGN

Fig. 2. Processing order for 8 8 CUs in a 16 16 CU is from A to D. For
each 8 8 CU, PU types are also processed sequentially from to

. Finally inside a PU type, processing order is from 1 to 4.

A. High-Efficiency Video Coding (HEVC)

High-Efficiency Video Coding (HEVC) is a new video
compression standard being standardized by the JCT-VC (joint
collaborative team on video coding) established by ISO/IEO
MPEG and ITU-T [4]. HEVC achieves 50% coding gain over
AVC/H.264 High Profile [5]. For this purpose, several coding
efficiency enhancement tools have been adopted to this new
standard. Table I provides a comparison between some of the
tools used in AVC/H.264 and HEVC standards.
One of the main differences of HEVC from its predecessor

AVC/H.264 is the adoption of coding quad-tree structure to pro-
vide a modular coding structure. In HEVC a frame is divided
into largest coding unit (LCU) and an LCU is further divided
into coding units (CU) in a quad-tree structure. LCU size can
be as large as 64 64 pixels and smallest coding unit (SCU)
size can be as small as 8 8. This allows the selection of a dif-
ferent coding structure based on various factors such as input
video resolutions and other properties of a video sequence.
If a CU is not divided into smaller CUs, it is predicted with

one of several prediction unit (PU) types. Either inter-prediction
or intra-prediction is used to represent a CU and PU types de-
termine which prediction type will be used to code a particular
CU. Fig. 2 shows the processing order of 8 8 CUs in a 16
16 CU and the PU order within an 8 8 CU. For inter-predic-
tion, PU types can be , , or where

corresponds to the size of the CU. Motion vectors for
inter-prediction are determined through motion estimation. If
asymmetric motion partitions (AMP) are used, non-square PUs
for inter-prediction also include , ,
and . It should be noted here that AMP partitions are
not included in the hardware cost and coding efficiency analysis

in this work but this analysis can be extended to cover these par-
tition types as well. is only used at the SCU level to avoid
redundant representation. This is because PU of a 16
16 CU can be represented with the PU at 8 8 CU
level. This is true except for the SCU level so is only
used in an SCU.

B. Motion Estimation in HEVC

Motion estimation (ME) is one of the most critical blocks in
video encoding in terms of implementation cost. Table II shows
specifications of various recently published video encoders. It
can be seen from Table II that ME accounts for a large fraction
of total encoder area.
Motion estimation in HEVC is block-based where block sizes

can be as large as 64 64 (LCU size) and as small as 4 4
( PU in an 8 8 CU). A 64 64 LCU can be repre-
sented by various combinations of CUs and PUs. For example,
64 64 LCU can be represented by a single PU or
it can be divided into 8 8 CUs where each CU is represented
with four 4 4 blocks ( PU type). In the former case,
an LCU is represented with a single motion vector pair (one
vector for horizontal displacement and one for vertical displace-
ment) and in the latter case, with 256 pairs. For an LCU with
many details, using smaller block sizes with separate vectors can
provide better compression. In contrast, for large and smooth
areas, using larger block sizes and fewer motion vectors can be
more efficient. Hence, supporting all block sizes provides the
highest flexibility and best coding efficiency but this also re-
sults in highest hardware implementation cost.
In hardware implementations, fast search algorithms [10],

[11] are widely used. These algorithms are extremely critical
for the complexity as they determine the number of calculations
and memory accesses which impact the area of hardware, its
power consumption and lastly its memory bandwidth require-
ment. Moreover, the search algorithm’s performance also af-
fects the coding efficiency depending on how accurately this
algorithm finds the motion.
Motion estimation is on the encoder side but a video com-

pression standard only defines the decoder side. Hence, encoder
side decisions can be different from one design to the other as
long as the output of the encoder is compliant with the stan-
dard. The decisions made on the encoder side, however, affects
coding efficiency.
In this paper, the encoder implementation given in the HM

3.0 software [12] using common conditions (single reference
frame in each direction, fast motion search, no AMP and no
merge mode) is used as the reference point. It should be noted
that some of these modes (e.g. 4 4) is no longer supported in
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HEVC but this work uses HM-3.0 as a baseline implementation
and results for the unsupported modes are kept in the analysis
to provide a reference to the readers.
This paper presents motion estimation design considerations

for HEVC standard with a focus on hardware implementation
trade-offs. For hardware cost, we considered on-chip hardware
and memory area as well as on-chip and off-chip bandwidth.
The rest of the paper is structured as follows. Section II presents
a hardware cost analysis for HEVC motion estimation and in-
vestigates the hardware cost vs. coding efficiency trade-off.
Based on the results from Section II, Section III focuses on one
of the possible motion estimation architecture configurations
and this section talks about hardware-aware fast search algo-
rithm development. Furthermore, hardware implementation
details are presented in Section III. Lastly, Section IV concludes
the paper.

II. HARDWARE COST ANALYSIS FOR HEVC
MOTION ESTIMATION

HEVC reference software implementation (HM) is com-
pletely sequential on the processing of the CUs and PUs
and consequently achieves highest coding efficiency. This is
mainly due to the dependency of one block’s cost calculations
on neighboring blocks’ motion information. Specifically, ad-
vanced motion vector prediction (AMVP) calculation requires
the spatial as well as temporal neighbor information to create
a list of motion vector predictors. This list is used to predict
the motion vectors during motion search and signal the final
motion vectors once the motion search is concluded [13].
Hence, it is important to consider an architecture which is

capable of implementing this sequential processing so we can
quantify the hardware cost of realizing a motion estimation en-
gine providing a coding efficiency that is equivalent to reference
software.
Previous work [14]–[17] has discussed various simplifica-

tions to allow search range and cost calculations across various
blocks to be shared in hardware. However, these simplifications
cause motion vector predictions to be inaccurate and hence a
degradation in coding efficiency.
This section presents an architecture that is capable of

processing CUs and PUs sequentially and performing motion
searches independently. Then, the hardware cost of HM’s fast
search algorithm is quantified with a methodology to estimate
area and bandwidth. Finally, a trade-off analysis is done that
compares different motion estimation configurations supporting
only a subset of all CU sizes and PU types in terms of area,
bandwidth and coding efficiency.

A. HEVC Motion Estimation Architecture

In hardware, HM’s sequential processing of CUs and PUs
requires separate and independent engines performing motion
search for different block sizes. Block sizes are determined
by the corresponding CU sizes and PU types. Fig. 3 shows an
HEVC motion estimation engine architecture supporting all
block sizes from 64 64 down to 4 4 except AMP partitions.
This architecture can be generalized to cover AMP partitions
as well. This architecture is designed to support real-time video
encoding with the specifications shown in Table III.

Fig. 3. Architecture for an HEVC motion estimation engine supporting all
block sizes from 64 64 to 4 4 (except AMP partitions). “PU Dec.” refers
to PU decision. This architecture allows sequential processing of smaller blocks
and can use exact motion information from neighboring blocks.

TABLE III
SPECIFICATIONS FOR AN HEVC ENCODER CONSIDERED IN THIS WORK.
THE DESIGN CAN SUPPORT REAL-TIME ENCODING AT 4 K 2 K AT 30 fps

WITH A CLOCK FREQUENCY OF 200 MHz

Fig. 4. Processing order of CUs and PU types inside CUs for the architecture
in Fig. 3. For a 64 64 LCU, costs for smaller blocks are combined and then
compared to larger block sizes to find the best combination of blocks providing
the smallest cost for the entire 64 64 LCU.

There are a total of 13 engines in the architecture in Fig. 3:
Three engines for each PU size (e.g. 32 32, 32 16 and
16 32 for the 32 32 CU) except for the 8 8 CU where
there is a fourth engine to support (4 4) partition.
Each engine consists of blocks to perform AMVP list, integer
motion estimation (IME), fractional motion estimation (FME)
and a reference pixel buffer.
The processing order for one 64 64 LCU is shown in Fig. 4.

Motion searches are performed for four 4 4 blocks, two 8
4 and 4 8 blocks and one 8 8 block. Then a PU decision is
made to decide which PU type provides the smallest cost for the
first 8 8 CU. Similarly, three more 8 8 CUs are processed
sequentially and their costs are output to CU & Mode Decision
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block. During this time, PU decision for the first 16 16 CU
is also finished and a decision can be done for the first 16 16
CU. This continues until an entire 64 64 LCU is processed by
all engines. It should be noted that intra/inter decision is done
at the CU level and hence costs associated with intra predic-
tion are being provided as external inputs to make an intra/inter
decision. It is also important to note that, for a fixed throughput
constraint, cycle budget to process a smaller block size is tighter.
Hence, data bandwidth requirements can be significantly larger
for smaller block sizes compared to larger block sizes. Conse-
quently, smaller block sizes impose a larger hardware cost.

B. Overview of Hardware Cost Analysis

The following part of this paper will be talking about the hard-
ware cost analysis of HEVCmotion estimation module. The top
level architecture given in the previous section will be used for
this analysis and the algorithms used in HM-3.0 implementation
will be analyzed.
The specifications of a target encoder are given in Table III

but this analysis can be extended for other encoder implemen-
tations. For hardware cost, we will consider logic and on-chip
memory area as well as on- and off-chip data bandwidth
requirements.
Logic Area Estimation Method and Results: For logic area

estimation, the methodology used is as follows:
1) Implement basic building blocks in hardware and use syn-
thesis tools to get unit area and power numbers at the target
frequency of operation point.

2) Calculate the amount of parallelism required for
throughput constraint.

3) Estimate total area by using unit numbers and amount of
parallelism.

In the top level architecture given in Fig. 3, there are a total
of 13 parallel engines. Looking at the number of pixel calcu-
lations/cycle, they are found to be constant across parallel en-
gines. Although the number of available cycles is getting larger
from smaller blocks to larger blocks, number of computations/
block is also getting larger with the same factor. Hence, the hard-
ware required for different engines to perform search candidate
evaluation is mostly constant.
Total area of one engine including IME, FME and AMVP

blocks is estimated to be 305 k gates in a 65 nm CMOS process.
It is important to note that the entire motion estimation module
in Fig. 3 consists of 13 engines, resulting in roughly 4 M gates.
Moreover, to support forward and backward motion estimation
of the random-access configuration, this number needs to be
scaled up by roughly a factor of two.
On-Chip Memory Size Estimation Method and Results: As

explained in Section II, each motion estimation engine in Fig. 3
is performing independent searches and for each engine, a sep-
arate memory is necessary in each direction (forward and back-
ward) and for each reference frame. Table IV shows the size
of on-chip memory needed to support 64 search range. Extra
pixels are necessary for pixel interpolation in fractional motion
estimation and they are included in calculations.
A total of 0.65 MB of on-chip memories is necessary to sup-

port a single reference frame in forward and backward direc-
tions for the entire motion estimation module in Fig. 3. This

TABLE IV
ON-CHIP REFERENCE BUFFER SIZE NEEDED FOR EACH ENGINE TO SUPPORT

64 SEARCH RANGE FOR A SINGLE REFERENCE FRAME

number heavily depends on the selected search range size. The
search range size can be reduced at the expense of coding effi-
ciency loss. The work in [18] quantifies this effect and reports
up to 3.5% loss in coding efficiency when search range is re-
duced from 64 to 16. For frame resolutions up to 4 K 2 K,
a larger search range is advantageous and this work uses 64 in
both directions for this analysis.
It should be noted that on-chip memory size for small block

sizes is not significantly lower than the size for larger block sizes
(39 kB for 64 64 and 19 kB for 4 4). Consequently, smaller
block sizes do not provide a significant advantage in terms of
memory size.
Additional on-chip storage (e.g. line buffers for motion in-

formation) can be necessary for AMVP but the size heavily de-
pends on the specific implementation and the target resolution.
Moreover, these buffers can be shared across parallel engines.
For this work, on-chip line buffers are considered for motion
information of the top line in forward and backward directions.
For a 4 K 2 K video encoder, the amount of storage is esti-
mated to be around 30 kB.
On-Chip and Off-Chip Bandwidth Estimation Method and

Results: On-chip and off-chip bandwidth are critical in hard-
ware implementations as these numbers affect system power
consumption and can be limiting factors.
On-chip bandwidth is determined by the size of reference

buffer for each engine and how frequently it is accessed. For the
fast search algorithm in HM, during IME, entire search range
can be accessed. This occurs in the case of complex motion. To
capture the worst-case upper limit, it can be assumed that the
entire search range in the reference buffer is accessed for every
block. On-chip bandwidth for FME is significantly smaller as
only a refinement is done at this stage. Lastly, bandwidth for
motion information of neighboring blocks that is necessary for
AMVP candidate calculations is small compared to the on-chip
bandwidth of the integer and fractional motion estimation.
The reference frames for high-definition sequences are often

too large to store on-chip thus they are stored on an off-chip
memory and the necessary parts of these reference frames are
transferred to on-chip buffers before processing. Off-chip band-
width considered here is the off-chip memory’s read bandwidth
to bring reference pixel data from off-chip to the on-chip buffers
for motion estimation. Similarly, off-chip bandwidth is deter-
mined by the size of the reference buffer and how frequently
reference buffers for each engine need to be updated. Because
of the correlation of motion between neighboring blocks, in the



SINANGIL et al.: COST AND CODING EFFICIENT MOTION ESTIMATION DESIGN CONSIDERATIONS FOR HEVC STANDARD 1021

TABLE V
ON- AND OFF-CHIP BANDWIDTH REQUIREMENTS FOR EACH ENGINE
IN FIG. 3 WITH A SEARCH RANGE OF 64. ALL NUMBERS ARE IN
GB/s. ON-CHIP BANDWIDTH NUMBERS REFLECT THE WORST-CASE
CONDITION AND OFF-CHIP BANDWIDTH NUMBERS ASSUME MAXIMUM

DATA REUSE BETWEEN CONSECUTIVE BLOCKS

ideal case, data re-use between consecutive blocks can be close
to 100%. However, it should be noted that the processing order
of CUs and PUs in an LCU (Fig. 4) does not allow 100% data
re-use and hence causes the same part of the reference window
to be read multiple times. Increasing size of the on-chip buffer
can improve the data re-use at the expense of larger on-chip
memory area. In this section, minimum buffer sizes given in the
previous sub-section (Table IV) are assumed in the bandwidth
calculations.
Table V shows on- and off-chip bandwidth requirement for

each engine. It should be noted that small block sizes such as 4
4 require a very large on-chip and off-chip bandwidth compared
to larger block sizes and imposes a higher cost for hardware
implementation.
Hardware Cost vs. Coding Efficiency Trade-Offs: In this sec-

tion of the paper, we will analyze various motion estimation
configurations where some block sizes (i.e. CU sizes and PU
types) are not supported and consequently we need less than 13
engines. However, the coding efficiency will be worse because
of the exclusion of some block sizes. It is important to quantify
the savings in hardware and loss in coding efficiency to be able
to make an optimum decision between supported block sizes.
Fig. 5 shows hardware area and bandwidth as well as coding

efficiency results for 11 different motion estimation configura-
tions. Each column corresponds to a different configuration sup-
porting all or some of the available block sizes.
Configuration #1 supports all block sizes and is the anchor

configuration for this work. Simulations in HM-3.0 are per-
formed to quantify coding loss for each configuration except
for the configurations #8–11 where HM-3.2 is used because of
a bug in HM-3.0 which prevents LCU size to be changed. The
bit-rate increase in Fig. 5 is given as the average of the num-
bers from all-intra, low-delay, low-delay P and random-access
common test conditions defined by JCT-VC [4]. The common
test conditions cover a wide range of sequences with resolutions
as small as 416 240 and as large as 2560 1600.
Fig. 6(a) and Fig. 6(b) plot core area savings vs. bit-rate in-

crease and off-chip bandwidth savings vs. bit-rate increase for
10 configurations in Fig. 5 with respect to the anchor, configu-
ration #1. Each configuration is denoted by a dot on this figure
except for the anchor configuration as the anchor would be at the
origin of the plot. The slope of the lines connecting each config-
uration to the origin provides a visual method to compare how
efficient each configuration is. A smaller slope means that more

Fig. 5. Hardware cost vs. coding efficiency comparison for 11 different motion
estimation configurations. “Y” and “N” represents if a block size is supported
or not respectively.

Fig. 6. (a) Core area savings vs. bit-rate increase and (b) off-chip bandwidth
savings vs. bit-rate increase scatter plots for all the configurations given in Fig. 5.

savings can be achieved with smaller bit-rate increase (coding
loss). Lines connecting configurations #3, #5 and #7 and the
origin are given on Fig. 6(a) and Fig. 6(b) as examples.
Observations and Conclusions: It can be observed from

Fig. 5 and Fig. 6 that configurations supporting smaller block
sizes such as 4 4 require largest area and bandwidth although
the coding gain achieved through supporting them is relatively
smaller. In other words, not supporting smaller partitions has
a smaller effect on coding efficiency although these engines
contribute significantly to bandwidth and area. For example, by
removing 4 4, 4 8 and 8 4 block sizes in configuration #2,
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17% memory area, 3.7 on-chip bandwidth and 2.3 off-chip
bandwidth can be saved at the expense of only 2% coding loss
with common conditions using a single reference frame and
fast search algorithm. This result supports the decision about
removing 4 4 PU and 4 8 and 8 4 bi-prediction from
the final standard.
Another observation from Fig. 5 and Fig. 6 is that not sup-

porting and does not result into significant
coding efficiency loss. Fox example, from configuration #2 to
#3, coding efficiency degrades by 1% and the degradation from
configuration #4 to #5 and #6 to #7 are less than 1%.
On-chip reference buffer size mainly depends on the search

range and block size. However, from smaller to larger block
sizes, the increase in memory size is not very significant. In
terms of memory bandwidth, small block sizes, especially
smaller than 8 8, impose very high bandwidth requirements.
If savings are necessary due to system level restrictions for
bandwidth, small block sizes can be chosen not to be supported.
Lastly, final decision on supported block sizes depends on

the area and bandwidth limitations as well as coding efficiency
specifications of the target encoder. Since larger area and higher
bandwidth often result in higher power consumption, battery-
poweredmobile applications might trade-off some of the coding
efficiency for lower power consumption. If coding efficiency
has the highest priority, all block sizes can be supported (con-
figuration #1) although this might lead to a significantly large
area and power consumption. If area as well as power are crit-
ical, configuration #5 and #7 are suitable solutions.

III. COST AND CODING EFFICIENT (CCE) HEVC
MOTION ESTIMATION DESIGN

In this section we will talk about architecture and algorithm
development for reducing the hardware cost even further with
minimum impact on the coding efficiency. It should be noted
that although the following algorithm and architecture develop-
ments are targeted for configuration #5, these algorithms and ar-
chitectures are suitable for all configurations supporting square-
shaped block sizes. Moreover, the hardware implementation de-
tails and results are also provided based on the proposed al-
gorithms presented in this section and the target specifications
given in Table III.

A. CCE Motion Estimation Architecture

Top level architecture for CCE motion estimation module is
given in Fig. 7. CU sizes of 64 64, 32 32 and 16 16
are supported. Since there is only a single PU type
in each CU engine, an internal PU decision is not necessary.
It should be noted that this architecture is still capable of pro-
cessing blocks sequentially and consequently using exact mo-
tion information of the neighboring blocks.

B. Search Algorithm Development for CCE Motion Estimation

Fast search strategy used in HM-3.0 starts the search around
the best AMVP and consists of many inter-dependent stages.
For example, the result of the initial diamond search determines
if a sub-sampled raster search is performed or not. In hardware

Fig. 7. Top level architecture of the CCE motion estimation implementation.
Block sizes of 64 64, 32 32 and 16 16 are supported.

Fig. 8. Two stage search approach used for CCE implementation. Stages are
independent of each other and can be performed in parallel in hardware.

implementation, this dependency increases complexity and
often results in extra cycles or extra hardware to account for
the worst-case conditions.
Recent work focused on search algorithms that can be

parallelized in hardware implementation [8], [16]. For CCE
implementation, we implemented a similar, two-stage search
strategy for IME where each stage can be independently per-
formed in parallel. Fig. 8 shows IME search patterns used in
each of the stages. First, search center is decided by comparing
AMVP list entries (up to three entries) and [0,0]. During this
comparison, SAD (sum of absolute differences) cost is used.
After search center is determined, two stages of the search is
started in parallel.
One of the parallel stages consists of a coarse search cov-

ering 64 by checking every 8th candidate in each direction.
This stage can capture a change in motion or irregular motion
patterns that cannot be tracked by AMVP. The second stage per-
forms a more localized three step search around the 7 window
of the search center. This stage can capture regular motion.
There are two additional advantages of running both searches in
parallel. First, the pixel data for the coarse search can be used to
perform the localized three step search hence reducing memory
bandwidth. Secondly, the cycles necessary to access the pixels
for both search stages can be shared to reduce the total number
of cycles.
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TABLE VI
AREA COMPARISON OF SHARED AND SEPARATE REFERENCE BUFFERS.

ESTIMATES ARE BASED ON A 65 nm CMOS TECHNOLOGY

It is important to note that the AMVP calculation for all CUs
uses exact motion vectors of the neighbors and AMVP is accu-
rate and hence can track motion well in most cases.
The proposed IME search strategy checks a total of 285

candidates for each CU as opposed to up to 848 candidates
that are checked in fast search strategy in HM-3.0. This re-
sults in roughly 2 hardware area reduction in IME for the
same throughput constraint. Actual savings might be larger in
implementation because of the additional complexity due to
inter-dependent stages of HM-3.0 algorithm. Lastly, for FME,
search strategy of HM is used where sub-pixel positions are
evaluated around the best integer motion vector to find the best
sub-pixel accurate motion vector.

C. Sharing Reference Pixel Buffers for CCEMotion Estimation

Sharing the on-chip reference buffer across parallel engines
can provide significant savings in terms of area and off-chip
bandwidth. However, restricting the search range of parallel en-
gines to a shared window will result in coding efficiency loss.
This loss can be minimized by determining the shared search
window carefully.
In the case of separate reference buffers with 64 search

range for each engine, the implementation in Fig. 7 requires
three 1R1W (1 read, 1 write) port memories with 39 kB, 27.5 kB
and 22.5 kB sizes for 64 64, 32 32 and 16 16 engines
respectively as given in Table IV. Total area consumed by these
three memories can be estimated to be roughly 1.25 in a
65 nm CMOS technology [19] as shown in Table VI. It should
be noted that this area is for storing the pixels on the chip for a
single direction and single reference frame.
In contrast to this, in the case of a shared reference buffer

with 64 search range, the size is determined by the largest CU
size and a single 39 kB memory is needed with 3R1W ports. Al-
though the bit-cell area and some peripheral components need
to be expanded to support multiple read ports, the overall area
can be smaller as shown in Table VI. Hence, shared search range
across parallel engines results in 16% area savings for the im-
plementation considered in Fig. 7.
With independent motion searches, each engine might have

different search centers and consequently access different parts
of the reference frame as the search window. Table VII shows
maximum and average off-chip bandwidth for 64 64, 32
32 and 16 16 engines. The upper limit on the bandwidth is
calculated by assuming that the entire on-chip reference buffer
needs to be updated between consecutive CUs and hence no
data re-use is possible. The total maximum off-chip bandwidth
is 29.5 GB/s for supporting 4 K 2 K resolution at 30 fps
assuming a search range of 64. Average bandwidth number

TABLE VII
MAXIMUM AND AVERAGE OFF-CHIP BANDWIDTH REQUIREMENT FOR

DIFFERENT CU SIZES (SEARCH RANGE IS 64) FOR SUPPORTING 4 K 2 K AT
30 fps. AVERAGE OFF-CHIP BANDWIDTH IS CALCULATED BY AN EXPERIMENT

ON TRAFFIC SEQUENCE UNDER RANDOM ACCESS CONDITION

with close to 100% data re-use between consecutive LCUs is
12.7 GB/s. In the case of a shared reference window across en-
gines, the maximum bandwidth is equal to the maximum band-
width of the 64 64 LCU since the size of the shared search
window is determined by the largest CU size given that the refer-
ence pixel data for smaller CUs are part of the data for the LCU.
Sharing the search window provides 13.4 and 8.3 savings in
terms of the maximum and average bandwidth requirements.
In order to minimize the coding efficiency impact of sharing

search window across engines, a good representative should be
selected for the motion of all CUs within an LCU. AMVP of the
LCU is observed to provide a good center point for the shared
search window. Fig. 9 shows the density map for the relative
location of the pixels from best matching blocks with respect
to the AMVP of the LCU for two different sequences. Best
matching blocks are calculated with the original HM-3.0 fast
search algorithm and the search range is 64 pixels in each di-
rection. For both sequences, more than 99% of the best matching
pixels lie in the 64 vicinity of the AMVP (192 192 block
of pixels surrounding the 64 64 block that AMVP is pointing
to) of the LCU. This indicates that AMVP of the LCU can be
used as the search window center without introducing signifi-
cant coding efficiency loss.
For smaller CUs that have different AMVPs and conse-

quently different search centers, the search window is modified
to fit in the shared window such that the window is shifted
to make sure it lands inside the shared search window in the
on-chip buffer. It is important to note that although the search
window is modified, original AMVP of the CU is used in
cost calculations. Moreover, total number of candidates stays
the same for all CU sizes regardless of the search window
being modified or not. This provides simplicity in hardware
implementation.

D. Reference Pixel Data Pre-Fetching Strategy

For a practical hardware implementation, off-chip memories
are used for large storage requirement of reference frames.
DRAMs are generally used to implement these off-chip storage.
Because of the internal mechanism of DRAMs, it is necessary
to request the data from off-chip memories in advance since
the latency of these memories can be on the order of thousands
of cycles. Stalling the encoding operation while waiting for the
pixel data from DRAM can cause a reduction of the throughput
of the system.
To address this, the pre-fetching strategy described in [20] is

implemented for CCEmotion estimation. This strategy involves
calculating the center of the reference window by only using the



1024 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 7, NO. 6, DECEMBER 2013

Fig. 9. (a) Density maps for the relative location of pixels from best-matching
blocks with respect to the AMVP of the LCU for (a) PeopleOnStreet and
(b) Traffic sequences. More than 99% of the pixels lie within 64 (a 192
192 block of pixels surrounding a 64 64 CU) of the AMVP of the LCU
(2560 1600 sequences with in random-access configuration).

information from the top row such that the requests for the pixels
can be placed in advance.

E. Enlarging On-Chip Reference Buffers for Higher Data
Reuse Rate

In order to share the cycles between writing to and reading
from the reference buffer, larger on-chip storage is necessary.
This extra storage is used to start writing the data for the next
LCU while motion estimation for current LCU is continuing.
For this purpose, an extra storage that is 64 pixels wide (size
of an LCU) is necessary. Obviously, extra storage alone is not
adequate if the search center from current LCU to next LCU
is changing. This issue can be addressed by allowing a larger
storage for reference buffers and algorithm modifications.
In the ideal case where consecutive LCUs have the same

AMVP, a 100% data reuse rate can be achieved where search
window moves to the right by 64 pixels for every LCU. An
illustration of 100% data reuse case is shown in Fig. 10(a),
where five LCUs and their corresponding search window are

Fig. 10. Search ranges of five consecutive LCUs with (a) uniformmotion max-
imizing data reuse and (b) non-uniform motion causing lower data reuse rate.

Fig. 11. Extra storage is needed for on-chip buffers to share cycles for read and
write accesses to the memories and N extra pixels on each side of the reference
buffer is considered for improving data reuse rate.
portion is used for current LCU and portion is used for next
LCU. LCU size is 64 64 and search range is 64.

shown. However, this is highly unlikely and AMVP of consec-
utive LCUs can be very different from each other especially in
frames with complex motion. Fig. 10(b) shows a case where
data reuse between five LCUs is very poor.
In the discussion above, we always considered the case where

on-chip reference buffer size is equal to the search window size
and additional storage for the next LCU.However, if the on-chip
memory size is increased to hold a larger window, data reuse
rate can be improved as there is a higher chance of the data on
the chip matching next LCU’s search window. Although larger
on-chip memories result in larger bandwidth per LCU, the im-
provement in data reuse rate can over-power this increase and
results in a reduction in overall average bandwidth.
It should be noted that although on-chip memories hold a

larger window, search window is not increased and kept as 64
in each direction and consequently the total number of candi-
dates in motion search is not affected from this modification.
Fig. 11 shows the reference window with N extra pixels on each
side and also the extra 64 pixels for the next LCU.
The effect of increasing reference buffer size by N pixels on

all four sides is analyzed in terms of bandwidth. Fig. 12 plots
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Fig. 12. Total off-chip write bandwidth, maximum data reuse rate and on-chip
buffer size for Traffic (2560 1600) and BasketballDrive (1920 1080)
sequences. Simulations are performed in Random Access test condition with

.

total off-chip bandwidth, maximum data reuse rate and on-chip
buffer size for two different sequences with changing N.
With increasing N, on-chip buffer size and the bandwidth

due to updating a larger buffer for every LCU increase. How-
ever, also with increasing N, maximum data reuse rate increases.
Fig. 12 also shows the bandwidth with 0% data reuse without
any increase in on-chip buffer size (i.e. ) and the band-
width with 100% data reuse with .
Because of the conflicting trends, write bandwidth makes a

minimum around for both sequences. This provides
close to 1.8X savings in off-chip bandwidth at the expense of
35% area increase in reference pixel buffers.
To further improve data reuse rate and reduce off-chip band-

width, pre-fetching algorithm is modified to limit the difference
between two AMVPs (centers of search windows) to . Intu-
itively, this translates to the search window being able to track
changes in motion by at most N pixel step sizes. For this work,
N is chosen to be 16 to minimize its effect on the coding effi-
ciency and to minimize total bandwidth.

F. Effect on Bit-Rate

The changes in various parts of the search strategy for CCE
motion estimation are implemented in the HM-3.0 software and
their effect on coding efficiency is quantified under common
conditions. Simulations are performed under the conditions de-
fined in [4].
Table VIII shows coding efficiency change with respect to

the HM-3.0 fast search algorithm in configuration #5 after each
modification. Columns LD, LDP and RA stands for low-delay,
low-delay with P and random-access test conditions as defined
by JCT-VC [4]. Avg column is the average of LD, LDP and RA.
Lastly, Max and Min columns are the maximum and minimum
rate change for all tested sequences respectively.

Fig. 13. Architecture of one engine in CCE HEVC motion estimation
implementation.

The average cumulative rate increase due to the proposed
changes is 1.6%. Search algorithm changes constitute 1% of
this increase. Random-access test conditions result in the largest
coding efficiency degradation as the distance between the ref-
erence frame and the coded frame is longer in this test condi-
tion. In general, sequences with lower resolution face a larger
degradation of coding efficiency compared to the sequences
with higher resolution because of the architectural decision to
not support CU sizes smaller than 16 16.

G. Hardware Implementation of a CU Engine

Hardware implementation results presented in this section are
based on the CCE ME implementation discussed in Section III.
Fig. 13 shows the architecture of one CU engine. Integer

and fractional motion estimation parts are implemented together
and they are not pipelined for maximum coding efficiency as
pipelining these processes would require integer motion vectors
to be used in the AMVP calculations.
Reference buffer and block buffer hold reference and cur-

rent CU’s data respectively. Reference buffer write control ex-
erts write operations on the reference buffer for the next LCU
whereas read control accesses the search range data. AMVP part
calculates the motion vector predictor list. Cost tree and com-
parator array are capable of calculating the cost of 4 motion
vector candidates/cycle for the 16 16 CU for which the cycle
budget is the shortest. For larger CU sizes, although the number
of cost calculations is the same, the throughput is lower (e.g. 1
motion vector candidate/cycle for 32 32 CU).
Best position and cost is stored in sequential elements and

compared against costs for newer candidates. Finally, engine
control ensures the flow of data inside the engine as well as the
communication of higher level control units.
This design is targeted towards an encoder supporting real-

time processing of 4 K 2 K frame resolution at 30 fps with
a 200 MHz clock as given in Table III. These specs require
the processing of each 64 64 LCU to be completed in 3292
cycles and the hardware design is parallelized to provide this
throughput.
To be able to support the 4 motion vector candidates/cycle

output requirement for the 16 16 CU engine, search range
is partitioned into 88 blocks of SRAMs, each block holding
roughly 200 words and four neighboring pixels on every word.
Fig. 14 shows the allocation of pixels on memory banks.

Going from one LCU to the next, since most of the data is
reused, only pointers to the memory locations are changed. This
is handled in the read control by holding the left-top coordinate
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TABLE VIII
SIMULATION RESULTS FOR THE CODING EFFICIENCY CHANGE AFTER THE SEARCH ALGORITHM, SHARED SEARCH WINDOW, PRE-FETCHING AND
LIMITING THE MOVEMENT OF SEARCH RANGE CENTER BY WITH RESPECT TO HM-3.0 (CONFIGURATION #5). NUMBER OF SEARCH
CANDIDATES, ON-CHIP BUFFER SIZE AND OFF-CHIP BANDWIDTH NUMBERS ARE ALSO PROVIDED FOR COMPARISON. ALL COLUMNS WITH

CODING EFFICIENCY CHANGE (I.E. LD, LDP, RA, AVG, MAX AND MIN) ARE IN PERCENTAGE VALUES

Fig. 14. Search range partitioning and physical location of pixels in memory
banks for the search range shown in Fig. 11 with .

(Left-TopX, Left-TopY) of the search range as well as an ad-
dress bias (AB) which is incremented by 64 pixels for every
LCU. Engine control requests a stripe (8 44) of reference
pixels by providing the left-top coordinate (InX,InY) to read
control. After data is read from SRAM blocks, 8 44 pixel
block is output in the next cycle. There is a multiplexer array at
the output of the read control to select appropriate outputs from
SRAM blocks and put them in order.
New data overwrites the older data sequentially for every

LCU in the reference buffer. At the beginning of an LCU line in
the frame, all memory locations need to be updated. For all other
LCUs, a 64 232 block (as explained in Fig. 11 with )
and possibly pixel wide edges are updated since, at the
algorithm level, the movement of the search center is limited to
be less than pixels between consecutive LCUs. Lastly,
the search range accessed by the read control and the pixels that
are overwritten by write control are not overlapping so read and
write operations can be done in the same cycle.

Fig. 15 Cost tree implementation using 1-bit absolute difference (AD) and mo-
tion vector cost calculation.

Synthesis results for the reference buffer read and write con-
trol show that a total of 52.6 k gates are used. Read control takes
up a larger area due to the multiplexers to select the outputs from
88 SRAM blocks.
As shown in Fig. 15, cost tree calculates costs and adds the

motion vector cost to create total motion cost. 1-bit partial ab-
solute-differences (AD) are calculated and 1-bit ‘msb’ informa-
tion is propagated to the output to make the critical path shorter.
ADs and msb bits from multiple pixels are summed in parallel.
MV cost calculation is implemented with a priority encoder as
shown in Fig. 15. The input to the priority encoder is the abso-
lute difference of the candidate and the motion vector predictor.
Then, comparator array compares costs of candidates with the
smallest cost and decides if the smallest cost needs to be up-
dated or not. At the end of the search, smallest cost and its cor-
responding candidates are signaled as motion vectors. Lastly,
cost tree and comparator array implementation results in 131 k
gates.
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Fig. 16. Block diagram of the AMVP block.

Fig. 17. Implementation of the scaling unit in AMVP.

Fig. 16 shows the implementation of the AMVP block. A0-1
and B0-2 are spatial neighbors and C and H are temporal neigh-
bors to the current block [13]. A scaling operation is used if
the motion information from the neighbors cannot be used di-
rectly. The scaling operation involves two multiplication oper-
ations and constitutes a large fraction of the overall area of the
AMVP block. Micro architecture of the scaling block is shown
in Fig. 17. Picture order count (POC) values of the current and
reference frame as well as the POC values of the neighboring
blocks are used to calculate the scaling factor. Two multipli-
cation operations are pipelined to meet the frequency require-
ments. Once the motion vector predictor candidates are calcu-
lated, they undergo a “uniquify” operation to ensure that the
final AMVP list is composed of distinct members. AMVP block
results in 26 k gates.

IV. CONCLUSION

Motion estimation is one of the most critical blocks in HEVC
encoder designs, and is analyzed for its hardware implementa-
tion cost in this work. This study presents the trade-offs between
coding efficiency and hardware cost in order to make critical
design decisions. Specifically, a motion estimation implemen-
tation providing coding efficiency equivalent to the reference
software is considered and its hardware cost is quantified. This
design is found to be very costly in hardware.
To reduce hardware cost, first, a reduction in the number of

coding engines is considered and quantitative analysis has been
performed to find the configuration providing the best trade-off.
Secondly, to further reduce hardware cost, hardware-oriented
algorithms are developed that are suitable for the selected archi-
tecture. Overall, 56 on-chip bandwidth, 151 off-chip band-
width, 4.3 core area and 4.5 on-chip memory area savings
are achieved when compared to the hardware implementation of

the HM reference software design. These savings are achieved
at the expense of 4% coding efficiency degradation with re-
spect to the HM-3.0 supporting all CU sizes and PU types and
with fast search. Finally, the methodology used in this work can
be generalized to other parts of a video codec design for un-
derstanding hardware cost and coding efficiency trade-offs and
eventually to make critical design decisions.
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