
MEMORY COST VS. CODING EFFICIENCY TRADE-OFFS FOR HEVC MOTION
ESTIMATION ENGINE

Mahmut E. Sinangil∗

Anantha P. Chandrakasan
Massachusetts Institute of Technology

Cambridge MA

Vivienne Sze
Minhua Zhou

Texas Instruments Inc.
Dallas TX

ABSTRACT

This paper presents a comparison between various High Ef-
ficiency Video Coding (HEVC) motion estimation configura-
tions in terms of coding efficiency and memory cost in hard-
ware. An HEVC motion estimation hardware model that is
suitable to implement HEVC reference software (HM) search
algorithm is created and memory area and data bandwidth re-
quirements are calculated based on this model. 11 different
motion estimation configurations are considered. Supporting
smaller block sizes is shown to impose significant memory
cost in hardware although the coding gain achieved through
supporting them is relatively smaller. Hence, depending on
target encoder specifications, the decision can be made not
to support certain block sizes. Specifically, supporting only
64x64, 32x32 and 16x16 block sizes provide 3.2X on-chip
memory area, 26X on-chip bandwidth and 12.5X off-chip
bandwidth savings at the expense of 12% bit-rate increase
when compared to the anchor configuration supporting all
block sizes.

Index Terms— HEVC, motion estimation, reference
buffer, memory area, memory bandwidth

1. INTRODUCTION

High-Efficiency Video Coding (HEVC) is a new video com-
pression standard currently being standardized by the JCT-
VC (joint collaborative team on video coding) established by
ISO/IEO MPEG and ITU-T [1]. HEVC targets 50% coding
gain over AVC/H.264 High Profile. In order to achieve this
goal, new tools are being adopted to HEVC. However, it is
important to consider the memory cost (in terms of area and
data bandwidth) of these tools in hardware.

Larger memory area and bandwidth generally results in
higher power consumption and this can be a limiting factor in
various applications such as portable multimedia and mobile
devices. Moreover, supporting higher bandwidth necessitates
more complex circuit solutions at the system level which is
not desirable due to increased manufacturing cost. Hence, it

∗Funding provided by Texas Instruments Inc.

provides valuable insight to have a memory size and band-
width vs. coding efficiency trade-off for different tools and
different blocks to make high-level design decisions.

One of the main differences of HEVC from previous
video compression standards is the coding tree structure. In
this structure, a frame is first divided into LCUs (largest cod-
ing units). Then an LCU is further divided into CUs (coding
units) in a quad-tree structure. Unless a CU is further divided
into four smaller CUs, it is predicted with one of several PU
(prediction unit) types. Currently, LCU size can be as large
as 64x64 and SCU (smallest CU) can be as small as 8x8.

For inter prediction, there are many different PU types.
2Nx2N, 2NxN, Nx2N and NxN are main PU types where
2Nx2N corresponds to the size of the CU. If asymmetric
motion partitions (AMP) are used, non-square PUs for inter
prediction also include 2NxnU, 2NxnD, nLx2N and nRx2N.
NxN is only allowed at the SCU level.

At the encoder side, decisions can be made to support only
a subset of these PU types and CU sizes. This will present a
trade-off between hardware complexity and coding efficiency.
Since motion estimation is one of the most critical blocks in
video encoders, trade-offs in motion estimation (ME) block
are very important for the overall encoder design.

This paper presents an analysis that compares various
HEVC ME configurations supporting different block sizes
based on memory cost in hardware and compression effi-
ciency trade-offs. The rest of this paper is organized as
follows: Section 2 presents HEVC ME architecture suitable
for HEVC quad-tree structure and HEVC reference software
(HM) search algorithm. Section 3 provides details about
calculation of on-chip memory area and data bandwidth esti-
mates. Lastly, Section 4 presents comparison between various
ME configurations in terms of coding efficiency, memory area
and bandwidth.

2. HEVC MOTION ESTIMATION ARCHITECTURE

HM is implemented to achieve highest coding efficiency. Ac-
cordingly, in motion estimation, motion cost associated with
every possible CU sizes and PU types are calculated to find
the best combination that provides the smallest cost. It should

1533978-1-4673-2533-2/12/$26.00 ©2012 IEEE ICIP 2012

be emphasized that these searches for different CU sizes and
PU types are performed around different and independent
centers. Moreover, the processing order is sequential in HM
so exact motion information can be used in Advanced motion
vector prediction (AMVP) calculations which depend on the
motion of neighboring blocks.

In hardware implementation, various simplifications are
often considered and implemented [2, 3]. For example, search
algorithm are designed to allow search ranges and cost cal-
culations to be shared across different block sizes to reduce
hardware complexity [4, 5]. However, these simplifications
cause coding loss. In this work, hardware implementation
of an architecture suitable for HM’s search algorithm is con-
sidered to quantify the hardware complexity and cost of this
algorithm and the quad-tree coding structure of HEVC. In
hardware, this algorithm requires separate and independent
engines performing motion search for different block sizes.
Block sizes are determined by the corresponding CU sizes
and PU types. Fig. 1 shows an HEVC motion estimation en-
gine architecture supporting all block sizes from 64x64 down
to 4x4 except AMP partitions. The architecture can be gener-
alized to cover AMP partitions as well.

There are a total of 13 engines in the architecture in Fig. 1:
Three engines for each CU size except for the 8x8 CU where
there is a fourth engine to support NxN (4x4) partition.

Fig. 1. Architecture of an HEVC motion estimation module
supporting all block sizes from 64x64 down to 4x4 except
AMP partitions.

The processing order for one LCU is shown in Fig. 2.
Motion searches are performed for four 4x4 blocks, two 8x4
and 4x8 blocks and one 8x8 block. Then a PU decision is
done to decide what PU type provides the smallest cost for the
first 8x8 CU. Similarly, three more 8x8 CUs are processed se-
quentially and their costs are output to CU & Mode Decision
block. During this time, PU decision for the first 16x16 CU
is also finished and a decision can be done for the first 16x16
CU. This continues until an entire LCU is processed by all
engines.

It is important to note that, for a fixed throughput con-
straint, cycle budget to process a smaller block size is tighter.
Hence, data bandwidth requirements can be significantly

larger for smaller block sizes compared to larger block sizes.

Fig. 2. Operation of the motion estimation module shown in
Fig. 1.

Fig. 3 shows the block diagram of each engine. On-chip
Reference Pixel Buffer holds pixel data for motion search.
AMVP block calculates the advanced motion vector predictor
list and integer motion estimation (IME) is performed around
the best AMVP candidate. Fractional motion vector refine-
ment is performed around the best motion vector found in
IME. Lastly, Merge/Skip Estimation calculate costs associ-
ated with the merge and skip modes. At the end, costs and
motion vectors are output to higher level control and decision
logic.

Fig. 3. Block diagram of one of the engines from Fig. 1.
Each engine has a separate reference pixel buffer to perform
an independent search.

3. HARDWARE COST ESTIMATE OF HEVC
MOTION ESTIMATION ENGINES

3.1. On-Chip Reference Buffer Size

As explained in Section 2, each motion estimation engine in
Fig. 1 is performing independent searches and for each en-
gine, a separate memory is necessary in each direction (for-
ward and backward) and for each reference frame. Table 1

1534

Block
Size

On-Chip Mem.
Size

Block
Size

On-Chip Mem.
Size

64x64 39KB 16x8 21KB
64x32 33KB 8x16 21KB
32x64 33KB 8x8 20KB
32x32 28KB 8x4 20KB
32x16 25KB 4x8 20KB
16x32 25KB 4x4 19KB
16x16 23KB

Table 1. On-chip reference buffer size needed for each engine
to support a search range of ±64.

shows the size of on-chip memory needed to support ±64

search range. Extra pixels are necessary for pixel interpo-
lation in fractional motion estimation and they are included in
calculations.

A total of 0.65MB of on-chip memories are necessary to
support a single reference frame in forward and backward di-
rections for the entire motion estimation module in Fig. 1.
This number heavily depends on the selected search range
size. To quantify the effect of search range size on the com-
pression efficiency, simulations in HM-3.0 are performed un-
der the test conditions defined in [1] and results are provided
in Table 2. From ±64 to ±16, bit-rate increase is 0.1%, 0.1%
and 3.5% in low delay, low delay with P and random access
test conditions. It should be noted that HM searches through
all possible combinations during encoding and also imple-
ments a highly-complex search algorithm. In a practical hard-
ware implementation, the coding loss due to reduced search
range size can be expected to be significantly larger.

It should also be noted that on-chip memory size for small
block sizes is not significantly lower than the size for larger
block sizes (39KB for 64x64 and 19KB for 4x4) and smaller
block sizes do not provide a significant advantage in terms of
memory size.

Additional on-chip storage (e.g. line buffers for motion
information) can be necessary for AMVP and Merge/Skip but
the size heavily depends on the specific implementation and
the target resolution. Moreover, these buffers can be shared
across parallel engines. For this work, on-chip line buffers are
considered for motion information of the top line in forward
and backward directions. For a 4Kx2K video encoder, the
amount of storage is estimated to be 0.03MB.

Search
Range

Low Delay
Low Delay

& P
Random
Access

±64 0% 0% 0%
±32 0% 0% 0.8%
±16 0.1% 0.1% 3.5%

Table 2. Effect of search range window size on coding effi-
ciency. Increases in bit-rate are given with respect to HM-3.0.
Single reference frames in both directions are used.

3.2. On- and Off-Chip Bandwidth

The second consideration in this section is about on- and off-
chip bandwidth as these numbers can be a limiting factor in
practical implementations. On-chip bandwidth is determined
by the size of reference buffer for each engine and how fre-
quently it is accessed. For the search algorithm in HM, during
IME, entire search range is accessed if the result of the initial
search is not good enough. This occurs in the case of com-
plex motion. To capture the worst-case upper limit, it can be
assumed that the entire search range in the reference buffer
is accessed for every block. On-chip bandwidth for FME
is significantly smaller as only a refinement is done at this
stage. Lastly, bandwidth for motion information of neighbor-
ing blocks that is necessary for AMVP and Merge/Skip candi-
date calculations is small compared to the on-chip bandwidth
of the integer and fractional motion estimation.

Block
Size

On-Chip
BW

Off-
Chip
BW

Block
Size

On-Chip
BW

Off-
Chip
BW

64x64 2.2 1.49 16x8 39.6 13.72
64x32 3.8 1.86 8x16 39.6 10.33
32x64 3.8 1.48 8x8 75.6 17.47
32x32 6.4 3.64 8x4 145.9 30.21
32x16 11.5 6.05 4x8 145.9 22.94
16x32 11.5 5.20 4x4 283.8 36.92
16x16 20.9 7.62

Table 3. On- and off-chip bandwidth requirement for each
engine in Fig. 1 with a search range of ±64 for 4Kx2K at
30fps. All numbers are in GB/s.

Off-chip bandwidth considered here is the off-chip mem-
ory’s read bandwidth to bring reference pixel data from off-
chip to the on-chip buffers for motion estimation. Similarly,
off-chip bandwidth is determined by the size of the reference
buffer and how frequently reference buffers for each engine
need to be updated. Because of the correlation of motion be-
tween neighboring blocks, in the ideal case, data re-use be-
tween consecutive blocks can be close to 100%. However, it
should be noted that the processing order of blocks in an LCU
does not allow 100% data re-use and hence causes the same
part of the reference window to be read multiple times. In-
creasing size of the on-chip buffer can improve the data re-use
at the expense of larger on-chip memory area. In this work,
minimum buffer sizes given in the previous sub-section are
assumed in the bandwidth calculations. Pixel data to evaluate
AMVP and Merge/Skip candidates might require additional
bandwidth if these candidates are spatially far away from each
other and do not fall into the search range in reference buffer.

Table 3 shows on- and off-chip bandwidth requirement for
each engine. It should be noted that small block sizes such
as 4x4 requires a very large on-chip and off-chip bandwidth
compared to larger block sizes and imposes a higher cost for
hardware implementation.

1535

1 2 3 4 5 6 7 8 9 10 11

Y Y Y Y Y Y Y N N N N64x64
Y Y N Y N Y N N N N N64x32
Y Y N Y N Y N N N N N32x64
Y Y Y Y Y Y Y Y Y N N32x32
Y Y N Y N N N Y N N N32x16
Y Y N Y N N N Y N N N16x32
Y Y Y Y Y N N Y Y Y Y16x16
Y Y N N N N N Y N Y N16x8
Y Y N N N N N Y N Y N8x16
Y Y Y N N N N Y Y Y Y8x8
Y N N N N N N N N N N8x4
Y N N N N N N N N N N4x8
Y N N N N N N N N N N4x4

680 565 248 439 208 234 163 356 170 201 115Ref. Buffer Size (KB)

1581 429 209 121 59 32.5 17.3 409 205 351 192On-Chip BW (GB/s)

159 69 30.2 27.4 12.7 8.5 5.1 64 28.7 49.1 25.1Off-Chip BW (GB/s)

0 2 3 12 12 34 34 3 4 7 11Bit-Rate Increase (%)

Configuration #

Fig. 4. Hardware cost vs. coding efficiency comparison table
for 11 different motion estimation configurations. “Y” and
“N” represents if a block size is supported or not respectively.

4. COMPARISON OF MOTION ESTIMATION
CONFIGURATIONS

Fig. 4 shows memory cost and coding efficiency results for
11 different configurations. Each column corresponds to a
different configuration supporting all or some of the available
block sizes. Configuration #1 supports all block sizes and is
the anchor configuration for this work. HM-3.2 simulations
are performed to quantify coding loss for each configuration.
The bit-rate increase in Fig. 4 is given as the average of the
numbers from all-intra, low-delay, low-delay P and random-
access common test conditions defined by JCT-VC [1].

Fig. 5 plots off-chip bandwidth savings vs. bit-rate in-
crease, with respect to the anchor. Each configuration is de-
noted by a dot on this figure except for the anchor config-
uration as it would be at the bottom left corner of the plot.
The slope of the lines connecting each configuration to the
bottom-left corner provides a graphical method to compare
how efficient each configuration is. A smaller slope means
that more area savings can be achieved with smaller bit-rate
increase (coding loss).

It can be observed from Fig. 4 and Fig. 5 that config-
urations supporting smaller block sizes such as 4x4 require
largest area and bandwidth although the coding gain achieved
through supporting them is relatively smaller. In other words,
not supporting smaller partitions has a smaller effect on cod-
ing efficiency although these engines contribute significantly
to bandwidth and area. For example, by removing 4x4, 4x8
and 8x4 block sizes in configuration #2, 17% memory area,
3.7X on-chip bandwidth and 2.3X off-chip bandwidth can be
saved at the expense of only 2% coding loss.

On-chip reference buffer size mainly depends on the
search range and block size. However, from smaller to larger

Fig. 5. Scatter plots showing off-chip bandwidth savings vs.
bit-rate increase, with respect to the anchor configuration.

block sizes, the increase in memory size is not very signif-
icant. In terms of memory bandwidth, small block sizes,
especially smaller than 8x8, impose very high bandwidth
requirements. If savings are necessary due to system level
restrictions for bandwidth, small block sizes can be chosen
not to be supported.

5. CONCLUSION

This paper presents a comparison for various HEVC ME con-
figurations in terms of memory cost in hardware and coding
efficiency. On-chip buffer size, on-chip bandwidth and off-
chip bandwidth estimations are calculated based on the refer-
ence implementation provided in HM.

Final decision on supported block sizes depends on the
area and bandwidth limitations as well as coding efficiency
specifications of the target encoder. Since larger area and
higher bandwidth often results in higher power consumption,
battery-powered applications might trade-off some of the cod-
ing efficiency for lower power consumption. If coding ef-
ficiency has the highest priority, all block sizes can be sup-
ported (configuration #1) although this might lead to a sig-
nificant area and power consumption. If area and power are
critical, configuration #5 and configuration #7 can be efficient
solutions.

6. REFERENCES

[1] “Joint Call for Proposals on Video Compression Technology,” ITU-T
SG16/Q6, 39th VCEG Meeting: Kyoto, 17-22 Jan. 2010, Doc. VCEG-
AM91.

[2] Yu-Kun Lin et al., “A 242mW 10mm
2 1080p H.264/AVC High-Profile

Encoder Chip,” in IEEE ISSCC, Feb. 2008, pp. 314 –615.

[3] Vivienne Sze et al., “A 0.7-V 1.8-mW H.264/AVC 720p Video Decoder,”
IEEE JSSCC, vol. 44, no. 11, pp. 2943 –2956, Nov. 2009.

[4] Tung-Chien Chen et al., “Analysis and architecture design of an
HDTV720p 30 frames/s H.264/AVC encoder,” IEEE TCSVT, vol. 16,
no. 6, pp. 673 – 688, June 2006.

[5] Tsung-Han Tsai et al., “High Efficiency Architecture Design of Real-
Time QFHD for H.264/AVC Fast Block Motion Estimation,” IEEE
TCSVT, vol. 21, no. 11, pp. 1646 –1658, Nov. 2011.

1536

