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A Deeply Pipelined CABAC Decoder for HEVC
Supporting Level 6.2 High-tier Applications
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Abstract—High Efficiency Video Coding (HEVC) is the latest
video coding standard that specifies video resolutions up to
8K Ultra-HD (UHD) at 120 fps to support the next decade of
video applications. This results in high-throughput requirements
for the context adaptive binary arithmetic coding (CABAC)
entropy decoder, which was already a well-known bottleneck
in H.264/AVC. To address the throughput challenges, several
modifications were made to CABAC during the standardization
of HEVC. This work leverages these improvements in the design
of a high-throughput HEVC CABAC decoder. It also supports
the high-level parallel processing tools introduced by HEVC,
including tile and wavefront parallel processing. The proposed
design uses a deeply pipelined architecture to achieve a high
clock rate. Additional techniques such as the state prefetch
logic, latched-based context memory, and separate finite state
machines are applied to minimize stall cycles, while multi-
bypass-bin decoding is used to further increase the throughput.
The design is implemented in an IBM 45nm SOI process.
After place-and-route, its operating frequency reaches 1.6 GHz.
The corresponding throughputs achieve up to 1696 and 2314
Mbin/s under common and theoretical worst-case test conditions,
respectively. The results show that the design is sufficient to
decode in real-time high-tier video bitstreams at level 6.2 (8K
UHD at 120 fps), or main-tier bitstreams at level 5.1 (4K UHD
at 60 fps) for applications requiring sub-frame latency, such as
video conferencing.

Index Terms—CABAC, High Efficiency Video Coding (HEVC),
H.265, Video Compression

I. INTRODUCTION

H IGH Efficiency Video Coding (HEVC), developed by the
Joint Collaborative Team on Video Coding (JCT-VC) as

the latest video compression standard, was approved as an
ITU-T/ISO standard in early 2013 [1]. HEVC achieves 2×
higher coding efficiency than its predecessor H.264/AVC, and
supports resolutions up to 4320p, or 8K Ultra-HD (UHD) [2].
It is expected that HEVC will serve as the mainstream video
coding standard for the next decade.

HEVC uses context adaptive binary arithmetic coding
(CABAC) as the sole entropy coding tool to achieve its high
coding efficiency [3]. The superior performance of CABAC
is achieved by the following two coding steps (as in the
order of encoding, which is the reverse of decoding): it
first maps the video syntax elements into its unique binary
representations, called bins, and then compresses the bins into
the bitstream using arithmetic coding with adaptive contexts.
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Fig. 1: The serial data dependencies caused by the feedback
loops within the CABAC decoding flow. The arrows denote
that the decoding of a current bin might depend on its previous
bin for (1) the arithmetic decoder state, (2) the updated context,
and (3) the selection of the context (or simply bypass).

CABAC is, however, also a well-known throughput bottle-
neck in H.264/AVC codecs. While high throughput entropy
encoding has already been demonstrated for HEVC [4], high-
throughput decoding still remains a challenge. This is due to
the highly serial data dependencies caused by several feedback
loops within the decoding flow as shown in Fig. 1. This
makes it difficult to support the growing demand for higher
resolutions and higher frame rates. Also, limited throughput
restricts the trade-off for power saving using voltage scaling.
As more and more video codecs reside on mobile devices, it
becomes a critical concern for battery life.

Efforts have been made to revise the CABAC in HEVC with
many throughput-aware improvements while maintaining the
coding efficiency [5]. This work will demonstrate an archi-
tecture that can maximize the impact of these new features
in HEVC including reduced context-coded bins, grouping of
bypass bins and reduced memory size requirement. These
changes to CABAC in HEVC, however, also create new
design challenges. For example, the truncated rice binarization
process gives rise to higher bin-to-bin dependencies on the
syntax element coeff abs level remaining due to the need to
parse cRiceParam. This makes the parallelization of syntax
parsing more difficult. In addition to the improved CABAC
performance, HEVC further introduces two high-level parallel
processing tools to make the whole decoder more paralleliz-
able, namely tile and wavefront parallel processing (WPP).
This work also provides full support for these tools.

Previous works on the CABAC decoder, mostly for the
H.264/AVC standard, attempt to increase throughput us-
ing mainly two low-level hardware parallelization methods:
pipelining and multi-bin per cycle decoding. Pipelining is
an effective way of extending parallelism at the temporal
domain. However, tight feedback loops at the bin level make
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Fig. 2: Block diagram of the CABAC decoder for HEVC. Black-filled blocks represent the stage registers used for pipelining.

the pipelined architecture suffer from an excessive number
of stalls [6], [7]. Multi-bin per cycle decoding explores the
parallelism by adding additional decoding logic. Many designs
decode up to two bins per cycle [8], [9], [10], [11], [12], and
a few others reach for more [13], [14]. However, multi-bin
per cycle decoding comes at the cost of decreased clock rate.
For either of the two parallelization methods to be effective,
the decoder needs to support the prefetching of extra decoding
information, including the decoding states and context models
due to dependencies. Besides prefetching all possibilities as
adopted by most of the above works, an alternative scheme
is prediction-based decoding, which only speculates the most
probable candidate for each bin to be decoded in order to
save the hardware overhead [12], [15]. Nevertheless, it lowers
the throughput due to the incorrect speculation penalty and
increased critical path delay. A highly parallel version of
CABAC is presented in [16], which achieves a throughput
above 3 Gbin/s through co-optimization of the coding al-
gorithm and hardware architecture; however, the resulting
implementation is not standard compliant.

This work proposes an architecture for the CABAC decoder
in HEVC with the goal of achieving the highest possible
throughput in terms of bins per second. The performance
will be optimized toward high bit-rate use cases where high-
throughput requirements are critical. Section II and III in-
troduce the techniques to exploit the parallelism for a high-
throughput decoder. Specifically, it describes and analyzes
the design choice of a deeply pipelined architecture. This
architecture incorporates features such as the state prefetch
logic, latch-based context memory and separate finite state
machines to minimize stalls, and employs a multi-bypass-bin
decoding scheme to further increase throughput. Section IV
presents the experimental and analytical results under the
common and theoretical worst-case conditions, respectively.
The synthesized throughput, area and power will also be
reported. The performance of the high-level parallel processing
tools that enable running multiple CABACs per frame are
discussed in Section V.

II. PROPOSED CABAC DECODER ARCHITECTURE

To realize the CABAC decoder for HEVC with the highest
possible throughput measured in bins per second, we seek
to increase two key factors, namely clock rate (cycles per
second) and average number of decoded bins per clock cycle.
The proposed design features a deeply pipelined architecture
to achieve a high clock rate. This section will describe the
pipeline design in detail. Timing analysis on each of the
pipeline stages will also be provided to demonstrate its impact
on increasing the clock rate.

A. Architecture Overview

Fig. 2 illustrates the block diagram of the proposed CABAC
decoder architecture. The bitstream parser (BP) buffers the
incoming bitstream and feeds the arithmetic decoder (AD)
according to the AD decoding mode. There are four decod-
ing modes, which invoke four different decoding processes:
context-coded bin decoding (CTX), bypass bin decoding
(BPS), multi-bypass-bin decoding (mBPS) and terminate bin
decoding (TRM). With the request of a decoding process, the
corresponding decoding engine (CTX-E, BPS-E, mBPS-E or
TRM-E) would be activated to perform the operation. The
decoded bins are then reassembled at the de-binarizer (DB)
into syntax elements. The rest of the decoder is responsible
for gathering decoding information for AD. First, the decoding
mode at each cycle is determined by two finite state machines
(FSM), BPS-FSM and CTX-FSM, according to the HEVC-
compliant decoding syntax. Only one out of the two FSMs
controls AD within a single cycle, which is decided by the
FSM Selector based on previously decoded syntax elements.
In addition, if the decoding mode invokes the CTX process,
the estimation of bin probability as modeled by the context
variables (CVs) is also required. CVs are initialized and
stored in the context memory (CM), and the required one for
decoding is retrieved by the context selector (CS). CS is only
controlled by CTX-FSM. After the CTX process, the updated
CV is written back to CM for future access.

Among the decoding engines in AD, CTX-E dominates
the decoding complexity and contains the critical path of
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Fig. 3: Different parts of the binary decision tree (BDT) for
the FSM prefetch logic. (a) A fully expanded BDT avoids
the need for stall cycles. (b) Stalls are kept to avoid creating
dozens of extra states, which would increase the critical path
delay of the FSMs.

AD. Therefore, we optimize CTX-E using the techniques
introduced in [16], including leading-zero detection, subin-
terval reordering, early range shifting and next cycle offset
renormalization, for a 22% reduction in delay.

B. Deep Pipelining with State Prefetch Logic

The architecture discussed in Section II-A is pipelined for
high-throughput decoding. The pipeline stages are shown in
Fig. 2, in which the black-filled blocks represent the stage
registers. The function blocks are divided into two groups,
the data path and the control path. The data path consists of
two pipeline stages: AD and DB. The control path is further
divided into two sub-paths based on the two FSMs. The BPS-
FSM path only has one stage that controls the data path
directly, while the CTX-FSM has a deeper three-stage pipeline,
including CTX-FSM, CS and CM. The overall design is a
deeply pipelined five-stage structure. If the next decoder state
depends on the decoded syntax element of the current state,
this architecture could impose up to four stall cycles.

State prefetch logic is introduced to eliminate the majority
of stalls imposed by the tight dependencies described above.
Fig. 3a shows an example of how the prefetch logic works.
Based on the binary value of the decoded bin at the current
decoder state, there are two choices for the next state. As
in the case of the syntax element last sig coeff x prefix, if
its first bin is 1, the decoding will continue to its second
bin; otherwise, the decoding will jump to the first bin of
last sig coeff y prefix. The next state logic of CTX-FSM will
prefetch both of the possible states and pass both of them along
the pipeline. The decision of which next state out the two
that will get executed at AD is delayed until the current bin

is decoded. Following this manner, the FSM logic becomes
a binary decision tree (BDT). However, the construction of
BDT is a trade-off between number of states and number
of stalls. If the BDT is fully expanded for all possibilities,
the number of states would grow exponentially and increase
the critical path delay. To balance between the two aspects,
the BDT is optimized to eliminate most of the throughput-
critical stalls while keeping the number of states to a min-
imum. Based on the analysis of common video bitstreams,
the transform coefficients account for a large proportion of
the total number of bins, and its decoding has a significant
impact on the throughput of CABAC [5]. Therefore, its
related parts of BDT, including syntax elements sig coeff flag,
coeff abs level greater1 flag, coeff abs level greater2 flag,
coeff sign flag and coeff abs level remaining, are fully ex-
panded, while the rest of BDT is optimized to avoid cre-
ating an excess number of states for each syntax element.
Fig. 3b shows an example where the stalls are kept. The
FSM stalls until the position of the last significant coeffi-
cient being decoded, so it can select the CVs for syntax
elements sig coeff flag. In the worst case, the decoder will
stall for three clock cycles for a transform block. Nevertheless,
if the states were to be fully expanded, dozens of unique
states need to be created to account for the different com-
binations of last sig coeff x prefix, last sig coeff y prefix,
last sig coeff x suffix and last sig coeff y suffix. This would
add an extra 10% to 15% more states to the BDT, increasing
the critical path of the FSMs. The overall throughput degrada-
tion due to the remaining stalls is approximately 12% (tested
with bitstream Nebuta at QP of 22, with techniques discussed
in Section III applied). The syntax element that contributes
the most stalls is coded sub block flag, which results in 6%
throughput degradation due to the bin-to-bin dependency. The
stall example in Fig. 3b also contributes 2%.

The number of possible next states at each pipeline stage
grows exponentially with the depth of the pipeline. To resolve
one state at the AD stage for decoding requires CTX-FSM
to compute next eight possible states at every cycle since
it occurs three stages before AD. Although BPS-FSM only
has the control path depth of one, it still needs to compute
next four possible states due to the multi-bypass-bin decoding
scheme, which will be discussed in Section III-B. At each
pipeline stage, the bins decoded by AD at previous cycle are
used to select the correct inputs states of the current cycle
from all input states, as shown by the mux at the beginning
of stage CS, CM and AD in Fig. 2.

C. Pipeline Stages Timing Analysis

The pipeline stages as shown in Fig. 2 are optimized to
achieve the highest clock rate. Table I shows the critical
path delay of the combinational logic in each stage of the
pipeline. Stage AD as well as CM has the largest delay in this
architecture and therefore determines the performance of the
entire CABAC decoder. Within stage AD, CTX-E dominates
the logic delay among all four decoding engines. The block
diagram of CTX-E and BPS-E are illustrated in Fig. 4a and
Fig. 4b, respectively, to show the critical path. The critical path
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Stage Name Critical Path Delay (ns)
CTX-FSM 0.42

CS 0.26
CM 0.44
AD 0.44
DB 0.41

BPS-FSM 0.20
FSM Selector 0.23

TABLE I: The critical path delay of each stage in Fig. 2 at
synthesis level. A 45nm SOI process is used. The delay is
calculated with only the combinational logic considered.

of CTX-E starts from input stateIdx and ends at output range.
Its critical path delay is approximately 300 ps in a 45nm SOI
process. The critical path of BPS-E starts from input shift and
ends at output offset. Its critical path delay is around 170ps.
The small delay difference between stage AD and CTX-FSM
explains that the effort put to optimize the CTX-FSM BDT is
as important as optimizing the delay of the CTX-E engine in
AD. The five-stage pipeline provides equally distributed delays
across stages, which enable high clock rate for high CABAC
decoding throughput.

This timing information could be applied to different de-
signs for comparisons from an architecture point of view.
An architecture adopted in previous works that achieves high
performance is the two-stage pipeline two-bin per cycle de-
coder [8], [9]. Its first stage consists of CS and CM, and
its second stage consists of a two-bin AD, DB and FSM
(the syntax element parser in [9]). The critical path lies on
the second stage. To translate the timing requirement of this
architecture for comparison, it should first be noted that the
delay of the two-bin AD, as timing optimized in [9], is about
1.3× higher than the proposed optimized one-bin AD. Also,
it is possible to co-optimize the delay of DB and FSM. Under
an optimistic assumption that only the delay from stage DB is
considered, the total delay of this stage as well as the critical
path of the entire architecture is approximately

1.3× delay(AD) + delay(DB), (1)

which is 0.98 ns. Recall that the overall throughput is the
product of clock rate and number of decoded bins per cycle.
Thus, to achieve the same throughput as the five-stage pipeline
in this paper, the average decoded bins per cycle of the
architecture in [9] needs to be at least 2.2× higher. In addition,
as indicated by the analysis in Section II-D, the proposed
architecture requires less area.

D. Pipelining vs. Multi-Bin per Cycle Processing

Pipelining and multi-bin per cycle processing are the
two low-level parallelization methods, as introduced in Sec-
tion I, used to speed up the processing of CABAC decoding.
This work applies both of these method in the form of a
deeply pipelined architecture with a multi-bypass-bin decod-
ing scheme (see Section III-B). Many previous works also
combine the two and optimize for their best throughput. It
becomes an important design consideration to understand the
implication of the two methods from an implementation point
of view for CABAC in HEVC.
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Fig. 4: Block diagram of (a) CTX-E and (b) BPS-E.

Ideally, a design capable of processing N bins per cycle
could deliver similar performance to a N -stage pipelined
one. Without considering the design complexity and cost, the
parallelism can be fully exposed to achieve the throughput
speedup of at most N times by expanding the FSM BDT.
The former can hide the logic delay of the N -bin AD by
performing parallel pre-computation, and the latter can reach
the clock rate of N times faster than without pipeline. In
reality, however, the cost to fully expose the parallelism is too
high to be practical. This leads to the trade-off in BDT design
discussed in Section II-B for both methods, and the N -bin
per cycle design may further suffer from reduced clock rate
since the serial nature of AD computation limited the efficacy
of parallel pre-computation. In addition, for the control path
that decides the decoding state and CVs, both methods are
required to resolve 2N possibilities. The pipelined architecture
can reduce the number of candidates by half for each of the
following stages, lowering the hardware cost for blocks such as
CS and CM, whereas the N -bin per cycle design needs to pass
all of the 2N possible candidates to the data path. Also, AD
in the N -bin per cycle design has to handle all possible N -bin
combinations of context-coded, bypass and terminate bins. The
number of possible combinations grows exponentially, so it is
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only feasible to speed up some of the most common sequences
for N larger than two, which becomes another trade-off with
reduced clock rate.

In order to go for high parallelism, a deeply pipelined
architecture is more plausible than a deep multi-bin design
from the above analysis. It is possible to divide the parallelism
N in the way that N = N1N2, where N1 and N2 are
the number of pipeline stages and number of multi-bin per
cycle, respectively. With smaller N1 and N2, it is easier to
take advantage of both methods as well as the throughput
improvement features introduced by HEVC that benefit the
multi-bin design, such as grouping of bypass bins and grouped
CVs. In this work, we use the deeply pipelined architecture to
increase the clock rate that can benefit all types of bins, and
employ the multi-bin processing only on the bypass bins to
further speed up the throughput demanding bitstreams without
affecting the clock rate.

E. Latch-Based Context Memory

The state prefetch logic addresses the stall issue for the
deeply pipelined architecture at the cost of higher compu-
tational requirements to the hardware. This concern is most
significant for CM, where two context variables need to be
prefetched as CM occurs in the stage before AD. Conventional
architectures use SRAM for low area and low power memory
access. Some works implement extra caches to achieve multi-
ple reads and writes within the same cycle [6], [9]. But these
designs cannot support truly random high-bandwidth memory
access as required by the state prefetch logic due to the limited
cache size. Fortunately, HEVC has 3× fewer contexts than
H.264/AVC. Thus, the required space to store all CVs reduces
to 1 kbit, which makes the all-cache CM implementation a
more practical option.

Latch-based cache requires smaller area and consumes less
power when compared to register-based cache. To ensure
glitch-free latch access, Fig. 5 demonstrates the design of the
latch enable signal with its timing diagram. The signal coming
into the enable (EN) port of the latch is constrained to settle
within the first half of the clock cycle; thus the logic delay
of the Enable Decoder, which is the grey region of the signal
ED N in the timing diagram, needs to be smaller than half
of the clock cycle. EN always resets to low when clock is
high, and will only be high at the second half of the clock
cycle. Although only half of the cycle is available for the
logic delay of the Enable Decoder and for the write data
(wData) to update the latch, it is not an issue for the deeply
pipelined architecture, as both the write address (wAddr) and
wData signals are coming from the pipeline stage registers.
The timing requirement can be easily met.

Table II lists the comparison of area and power between all
three possible memory implementations at synthesis level. At
the size of 1 kbit, the latch-based design takes only 15% more
area than SRAM, but reduces power consumption by 1.7×.
When compared to the register-based design, the latch-based
memory not only reduces power by 2.8×, but also reduces
area by 1.5×.
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Fig. 5: Glitch-free latch enable design with its timing diagram.

Memory Design Area (eq. gate count) Power (mW)
SRAM 11.7k 8.10

Register-based 20.2k 13.10
Latch-based 13.4k 4.68

TABLE II: Comparison between different types of 1 kbit
memory implementation for CM at synthesis level. The power
is measured under a 2GHz clock and an 100% memory
read/write pattern.

III. THROUGHPUT IMPROVEMENT TECHNIQUES

In Section II, we introduce a deeply pipelined CABAC
decoder architecture that can achieve a high clock rate. The
stalls caused by data hazard in the deep pipeline are handled
by a conventional state prefetch logic. In this section, we seek
to further improve the throughput by applying two architecture
techniques that are motivated by the high-throughput features
of CABAC in HEVC. One is to reduce more stalls with a
shallower pipeline for bypass bins. The other one will equip
the architecture with multi-bin processing capability. It will
also talk about the essential hardware changes required to
support the high-level parallel processing tools in HEVC.

A. Separate FSM for Bypass Bins

HEVC has fewer context-coded bins than H.264/AVC, re-
sulting in a larger proportion of bypass bins. In addition, most
of the bypass bins are grouped together to reduce the amount
of switching between bypass bins and context-coded bins.
These observations lead to the design of separate finite state
machines for context-coded bins (CTX-FSM) and grouped
bypass bins (BPS-FSM). The FSM Selector is used to select
the FSM that should be enabled for each cycle. CTX-FSM can
handle all decoding modes except the mBPS mode, while BPS-
FSM only operates for the grouped bypass bins with the BPS
or mBPS mode. BPS-FSM does not manage all bypass bins,
however, as that complicates the logic in the FSM Selector
to switch between the two FSMs frequently, creating a longer
critical path.

As discussed in Section II-B, the CTX-FSM path is divided
into three stages to support CS and CM while maintaining
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Syntax Hierarchy Syntax Elements
Prediction Unit mpm idx, rem intra luma pred mode

Transform Unit
last significant coeff x suffix,
last significant coeff y suffix

coeff sign flag, coeff abs level remaining

Loop Filter

sao type idx luma, sao type idx chroma
sao offset abs, sao offset sign

sao band position, sao eo class luma
sao eo class chroma

TABLE III: List of syntax elements that utilize the BPS-FSM
path.

a short critical path. As CS and CM are not needed for
bypass bins, the BPS-FSM path only has one stage. Separating
grouped bypass bins out of CTX-FSM simplifies the logic
of CTX-FSM. Also, a shallower pipeline for grouped bypass
bins eliminates stalls within the bypass bins. Since the FSM
Selector and the two FSMs reside in different pipeline stages,
the critical path will not be affected. Table III provides a
complete list of syntax elements that utilize the BPS-FSM
path. The benefit is most significant for syntax element co-
eff abs level remaining, which can take up around 5% to
10% of the total workload in common bitstreams. Three stall
cycles are saved for each coeff abs level remaining when
compared to without a separate BPS-FSM path since the
binarizaton of the next syntax element depends on the value
of the current one due to the updating of cRiceParam. When
tested with high bit-rate bitstreams such as Nebuta at QP of
22, where transform coefficients account for a large proportion
of the workload, the separate FSM design increases the overall
throughput by almost 33%.

B. Multi-Bypass-Bin Decoding

Grouping of bypass bins also increases the benefit of de-
coding more than one bypass bin per cycle. The logic delay of
BPS-E is around half of the optimized CTX-E. Also, concate-
nating two BPS-E will not double the critical path delay since
the critical path in BPS-E is from input shift to output offset as
shonw in Fig. 4b. Therefore, without increasing the AD stage
delay, the deeply pipelined architecture can decode two bypass
bins per cycle with mBPS-E, which is the concatenation of two
BPS-Es. The corresponding decoding mode, mBPS, is used
for the bins of coeff sign flag and coeff abs level remaining.
Since the number of bins combined from these two syntax
elements account for at least 10% to 20% of the total number
of bins in common video bitstreams, this scheme can improve
the throughput significantly. To support mBPS, the BDT width
of the BPS-FSM control path needs to be doubled, as the
prefetch logic has to compute next four possible states instead
of two.

It is also possible to increase the number of bypass bins
decoded per cycle, M , beyond two at the cost of increased
complexity of BPS-FSM and possible extra critical path delay.
By first ignoring the impact on the critical path delay, Fig. 6
shows the improvements on the average decoded bins per cycle
by setting M to 2, 3 and 4 and compare to M of 1. While
the improvements vary across different testing sequences and
QP configurations, it is clear that increasing M beyond 2 only
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Fig. 6: The improvements on the average decoded bins per
cycle by increasing the maximum amount of bypass bins to
be decoded within the same cycle. All Class A and B common
testing sequences in [17] are tested. The results from different
coding structures (All Intra, Low Delay, Random Access)
are averaged within each sequence. (a) and (b) shows the
configurations at QP equals to 22 and 37, respectively. The
detail of the testing sequences could be found in Table IV.

gives marginal improvements compared to increasing M from
1 to 2. This justifies the design with M equals to 2 considering
the extra cost.

C. Support of High-Level Parallel Processing Tools

The idea of high-level parallel processing in HEVC, in-
cluding both the tile processing and WPP, is to divide each
video frame into several smaller parts, and all parts can run
in parallel by applying the same CABAC decoding process
across multiple CABAC decoding engines. To support these
tools, additional high-level control flow and CM for WPP are
required. In this work, with only one set of CABAC decoding
engines, the CM access pattern is as illustrated in the example
shown in Fig. 7, and is described as follows:

1) For the decoding of coding tree units (CTUs) in the first
row, the decoder retrieves and updates the CVs from CV
Set 1 in CM. A CV Set contains all required CVs for
the decoding of a CTU.
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Fig. 7: An example of the CM access pattern with WPP
enabled: (1) The CTUs in the first row use and update the
CVs from CV Set 1 in CM. (2) The CVs in CV Set 1 are
replicated into CV Set 2 after the second CTU in the first row
finishes decoding and before the third CTU begins to update
it. (3) The CTUs in the second row use and update the CVs
from CV Set 2 in CM.

2) After finishing the decoding of the second CTU in the
first row, and before the decoding of the third CTU
updates the CVs in CV Set 1, CM replicates the CVs
from CV Set 1 to CV Set 2.

3) For the decoding of CTUs in the second row, the decoder
retrieves and updates CVs from CV Set 2 in CM.

This process is repeated for every two adjacent CTU rows.
Odd number CTU rows use the CVs in CV Set 1 and replicate
it to CV Set 2, and even number CTU rows use the CVs in
CV Set 2 and replicate it to CV Set 1. The above description
suggests that the size of CM needs to be large enough to store
two set of CV values. In the case of HEVC, the size of CM
becomes 2 kbit. With an all-cache CM design, the delay of the
replication process can be greatly shortened than with SRAM
since more CVs could be copied between the two sets per
clock cycle.

IV. EXPERIMENTAL RESULTS

A. Experimental and Synthesis Results

Table IV shows the simulated decoding performance of the
proposed architecture for common test bitstreams [17]. It has
taken the impact of stalls (as discussed in Section II-B) and the
throughput improvement features (as discussed in Section III)
into account. In general, the bins per cycle of the high bit-
rate sequences, especially the all-intra (AI) coded ones, is
higher than that of the low bit-rate bitstreams. For example,
Nebuta, with a bit-rate up to 400 Mbps, can be decoded at
1.06 bin/cycle.

The variation of the decoding performance is due to the de-
sign trade-offs of the deeply pipelined architecture. Since more
efforts are put into speeding up the processing of transform
coefficients, the high-demanding bitstreams that have high bit-
rate and consist of a large proportion of transform coefficient
bins will benefit more from the design. These bins are mostly
bypass bins. Specifically, as shown in Fig. 8, there is a clear
linear dependency between the percentage of bypass bins in
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Fig. 8: The linear dependency between the percentage of
bypass bins in the bitstream and the average decoded bins per
cycle achieved by the proposed design. The data points are
collected from the simulation with common test sequences in
Table IV.
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Fig. 9: Layout of the proposed CABAC decoder.

the bitstreams and the average decoded bins per cycle achieved
by the design. This suggests that the proposed design is
suitable for processing high-demanding bitstreams in HEVC,
and the performance only scales back for the less demanding
bitstreams, which have lower throughput requirements.

The design is implemented in an IBM 45nm SOI process
with 0.9V supply voltage. At synthesis level, it achieves a
maximum clock rate of 1.9 GHz [18]. After place-and-route,
the maximum clock rate becomes 1.6 GHz (with 30 ps clock
uncertainty margin). A snapshot of the layout is shown in
Fig. 9. For the AI-coded Nebuta bitstream at QP of 22, the
throughput reaches 1696 Mbin/s, which is already sufficient
for the real-time decoding of level 6.2 (8K UHD at 120
fps) video bitstreams. The total gate count of the CABAC
decoder is 92.0k and 132.4k at synthesis and place-and-route
levels, respectively. In order to support WPP, the size of
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Class Sequence Frame Rate (Hz) QP Coding Structure Bit Rate (Mbps) Bypass Bins (%) Bins/Cycle

A

Traffic 30

22
AI 101.89 34.9 0.83

(2560x1600)

LD 13.83 18.4 0.70
RA 13.24 23.8 0.73

37
AI 18.53 26.9 0.71
LD 1.00 17.7 0.64
RA 1.34 22.4 0.66

People 30

22
AI 104.72 37.4 0.85

On Street

LD 37.56 27.6 0.78
RA 32.83 30.9 0.78

37
AI 20.40 29.2 0.67
LD 5.02 25.9 0.69
RA 4.64 28.8 0.70

Nebuta 60

22
AI 403.02 46.9 1.06
LD 239.32 42.8 1.02
RA 216.38 41.1 1.01

37
AI 81.55 26.4 0.83
LD 9.06 13.3 0.77
RA 7.14 16.9 0.79

Steam 60

22
AI 100.39 36.2 0.92

Locomotive

LD 30.52 20.1 0.82
RA 23.55 22.8 0.82

37
AI 14.54 27.3 0.78
LD 1.20 19.6 0.64
RA 1.21 21.8 0.66

B

Kimono 24

22
AI 22.25 38.6 0.90

(1920x1080)

LD 5.21 27.8 0.81
RA 4.80 32.3 0.82

37
AI 3.83 28.9 0.77
LD 0.58 20.2 0.68
RA 0.55 25.0 0.70

Park Scene 24

22
AI 52.75 34.9 0.85
LD 7.97 19.5 0.70
RA 7.69 26.1 0.75

37
AI 7.31 24.5 0.71
LD 0.59 17.4 0.62
RA 0.73 21.7 0.65

Cactus 50

22
AI 105.39 30.7 0.83
LD 20.05 18.8 0.74
RA 18.44 22.5 0.75

37
AI 14.30 26.6 0.69
LD 1.29 19.5 0.65
RA 1.40 23.6 0.66

BQ Terrace 60

22
AI 180.18 31.0 0.90
LD 52.82 15.0 0.77
RA 39.64 16.8 0.78

37
AI 21.81 24.8 0.68
LD 0.79 15.8 0.60
RA 1.00 19.8 0.62

Basketball 50

22
AI 71.14 26.7 0.81

Drive

LD 19.86 21.4 0.76
RA 17.40 24.1 0.77

37
AI 8.52 23.3 0.66
LD 1.61 21.3 0.66
RA 1.50 24.6 0.67

TABLE IV: Simulated decoding performance of the proposed design for common test sequences [17]. Each sequence is coded
with two QP configurations and three coding structures: All Intra (AI), Low Delay (LD) and Random Access (RA).

CM is 1 kbit×2 as discussed in Section III-C. The power
consumption after place-and-route is 51.6 mW. Table V shows
the area and power breakdowns of the function blocks. Among
different blocks, CM consumes the largest proportion of area
and power (34.6% and 28.9%, respectively). If we replace
the latch-based CM with a register-based one, the total area
and power consumption would increase by 17.3% and 52.0%,
respectively, as suggested by Table II, which justifies the use
of latch-based memory design.

Fig. 10 shows the performance comparison between the pro-
posed work and previous designs, including both H.264/AVC
and HEVC works. Since the clock rate and number decoded

bins per cycle can be regarded as the degree of pipelining1

and the degree of multi-bin processing, respectively, this plot
shows how different works optimize the performance based on
the two low-level hardware parallelization methods. It should
be noted that while all previous works are reporting synthesis
results, we are presenting the result at post-place-and-route
level. The bins per cycle number of the proposed work spans
across a region since it varies with the testing bitstreams. The
highest and lowest numbers in the plot are from Table IV.
Though the works spread across the entire space in this
plot, the designs using the same or similar technology nodes

1if the effects of different technology nodes are compensated.
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Fig. 10: Performance comparison between the proposed work and previous designs, including both H.264/AVC and HEVC
works [19], [6], [7], [13], [14], [11], [20], [8], [15], [9], [10], [12]. The works using the same or similar technology processes
are grouped into the same marker. The filled markers denote the works for HEVC, while the rest is for H.264/AVC. It should
be noted that while all previous works are reporting synthesis results, the result of our work is obtained after place-and-route.
The performance of the proposed design spans across a range since it depends on the testing bitstreams. This plotted range
uses the data from Table IV.

Gate Count Power (VDD = 0.9V)
Total 132.4k (100%) 51.6mW (100%)

Arithmetic Decoder 7.1% 17.0%
Context Memory 34.6% 28.9%(1 kbit×2)

Finite State Machines 12.5% 15.6%(CTX+BPS)
Line Buffers 17.0% 9.6%

Context Selection 4.7% 6.2%
De-binarization 13.9% 8.4%

Bitstream Parser 8.6% 5.6%

TABLE V: The area and power breakdowns of the proposed
design after place-and-route in IBM 45nm SOI process.

usually yield similar throughputs in terms of bins per second.
By comparing the works within each of these groups, it
shows a more clear picture of how the different architectures
translate to performance trade-offs. The result also shows
that the proposed design has a clear throughput advantage
over previous works. It comes not only from the advance in
technology, but also from the architecture techniques used as
described in Section II and III. Table VI summaries a more
detailed comparison between the proposed design and three
recent works [8], [9], [12].

B. Analytical Worst-Case Performance

The decoding latency of CABAC is another important
performance indicator. For applications such as video con-
ferencing or live broadcasting, sub-frame latency is required
for real-time streaming. In addition, within the design of a
HEVC decoder, the syntax elements decoded by CABAC are
further processed by the HEVC decoder backend. The backend
usually processes data at the granularity of a CTU. Therefore,

the latency variation of a CTU determines the buffer size
between the CABAC decoder and the backend.

The decoding latency is directly proportional to the bin-
rate of the video bitstream. HEVC defines the maximum
bin limits at three granularities: within a CTU, within a
frame, and across frames. These limits, therefore, correspond
to the worst-case decoding latencies of a CTU, a frame,
and multiple frames, respectively. According to the equations
shown in Appendix A, the worst-case bin-rate limits of the
three granularities are listed in Table VII at specific bitstream
levels and tiers with given resolutions and frame rates. The
calculation uses the updated parameters listed in [22] instead
of in [1]. The limits tend to be lower when larger latency is
tolerated since workload can be averaged across CTUs and
frames. The decoder throughput needs to be higher than these
limits to guarantee real-time low latency decoding.

To assess the performance of the proposed CABAC decoder
under these worst-case scenarios, the decoder is assumed
to decode with the maximum number of bins per CTU as
described above for the maximum bin-rate per CTU, and
compared to the limits at three different granularities. Taking
the number of bypass bins decoded with the mBPS mode
as well as the stalls into account, the design in this work
can decode at 1.44 bin/cycle. The corresponding throughput
is 2314 Mbin/s, which is higher than the one under the
common test conditions. The reason is that, under the worst-
case scenarios, the decoding is dominated by the bypass bins
(5096 bypass bins out of 5960 total bins per CTU, or 85% of
bypass bins), and the proposed design is optimized toward the
decoding of more bypass bins. In Table VII, we shade in grey
all bin-rate limits that can be achieved by this design in real-
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Lin [8] Liao [9] Choi [12] This Work
Standard AVC AVC HEVC HEVC

Technology UMC 90nm UMC 90nm Samsung 28nm IBM 45nm SOI

Gate Count synthesis 82.4k 51.3k 100.4k1 (0.047mm2) 92.0k
place & route 132.4k

SRAM Size N/A 179B N/A N/A

Max. Frequency synthesis 222 MHz 264 MHz 333 MHz 1900 MHz
place & route 1600 MHz

Bins/Cycle 1.96 1.842 1.30 1.063

Throughput synthesis 435 Mbin/s 486 Mbin/s 433 Mbin/s
place & route 1696 Mbin/s

1 without the bitstream parser buffer [21]
2 with the test bitstream bit-rate at 130 Mbps
3 with the test bitstream bit-rate at 403 Mbps

TABLE VI: Comparison on the results of different CABAC decoder implementations. The gate counts of all four works include
CM, either implemented by caches or SRAM.

Level 4.0 4.1 5.0 5.1 5.2 6.0 6.1 6.2
Frame Height 1080 1080 2160 2160 2160 4320 4320 4320
Frame Width 2048 2048 4096 4096 4096 8192 8192 8192
Frame Rate 30 60 30 60 120 30 60 120

Main Tier
Per CTU 1550 3100 6200 12400 24800 24800 49600 99200

Per Frame 292 585 813 1270 2540 2540 5070 13000
Multi-Frame 16 27 33 53 80 80 160 320

High Tier
Per CTU 1550 3100 6200 12400 24800 24800 49600 99200

Per Frame 292 585 1170 2340 4680 4680 9350 18700
Multi-Frame 40 67 133 213 320 320 640 1070

TABLE VII: The worst-case bin-rate (Mbin/s) limits of three granularities with different bitstream levels and tiers at given
resolutions and frame rates (fps). The table cells shaded in grey are the achievable throughputs by the proposed design with a
single CABAC decoder.

time for each granularity under worst-case scenarios. If multi-
frame latency could be tolerated, the design can decode level
6.2 bitstreams in real-time for both main and high tiers. For
applications that require sub-frame latency, it is also capable
of decoding at level 5.1 (4K UHD at 60 fps) for main tier or
level 5.0 (4K UHD at 30 fps) for high tier in real-time.

V. HIGH-LEVEL PARALLEL PROCESSING TOOLS

HEVC provides two high-level parallel processing tools,
WPP and tile processing, to speed up the decoding when mul-
tiple CABACs are available. WPP parallelizes the processing
of each row of CTUs within a frame. Tile processing divides
a frame into several rectangular tiles for parallel processing.
While adjacent CTU rows in WPP mode still have CV and line
buffer dependencies on each other, the processing of tiles are
completely independent for CABAC. Fig. 11 demonstrates the
speedup of CABAC decoding performance using both WPP
and tile processing. In both cases, the amount of parallelism
is defined as the maximum amount of rows or tiles that can
be decoded at the same time by duplicating the decoding
hardware of the proposed design. The testing sequences are the
common sequences as listed in Table IV. For each data point,
the speedup is compared with using the same configuration
but without any high-level parallelism.

Due to the dependency between CTU rows in WPP, and
the workload mismatch of the tiles in tile processing, the
performance speedup through high-level parallelism is not
linear. There is a clear trend in the case of WPP that bitstreams
with higher bit-rate get more consistent speedup than those

with lower bit-rate. In the case of tile processing, it shows less
speedup saturation when increasing the bit-rate. These obser-
vations could be explained by the following analysis. Fig. 12
demonstrates the histogram of required decoding cycles per
CTU by the proposed design for two different bitstreams. The
AI-coded Nebuta sequence at QP of 22 represents the high
bit-rate and high throughput bitstream, and the LD-coded BQ
Terrace at QP of 37 is the exact opposite. Table VIII gives the
average and the standard deviation σ of the required decoding
cycles per CTU for data in Fig. 12. Even though the σ of
BQ Terrace is much lower than that of Nebuta, it is much
higher than its own average. In terms of decoding performance
in the case of WPP, this results in high uncertainty in CTU
dependency for low bit-rate bitstream and contributes to the
wide range of speedup performance. The speedup is relatively
consistent for high bit-rate bitstream since the σ is only
a fraction of the average. For tile processing, the unit of
comparison becomes a tile, which is a set of CTUs. At tile
level, the variation of the CTU performance is averaged across
multiple CTUs and becomes less significant. The performance
is affected more by the spatial variation of the contents within
a frame, and is dependent on the specific sequence under test.

VI. CONCLUSION

In this paper, we propose the hardware architecture of a
CABAC decoder for HEVC that leverages the throughput im-
provements of CABAC introduced in HEVC. It also supports
the two new high-level parallel processing tools introduced
by HEVC, namely WPP and tile processing, for running
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Fig. 11: The speedup of the CABAC decoding throughput by
increasing the decoding parallelism using high-level parallel
processing tools in HEVC. (a) and (b) shows the results from
WPP and tile processing, respectively. The bitstreams used are
the common sequences as listed in Table IV. For each testing
bitstream, its decoding throughput without enabling WPP or
tile processing is used as the baseline (speedup of 1×).

Avg. Cycles/CTU Std. Dev. Cycles/CTU
Nebuta 7376.5 1808.0AI, QP=22

BQ Terrace 59.1 98.1LD, QP=37

TABLE VIII: The average and standard deviation of required
decoding cycles per CTU.

multiple CABACs in parallel. The design features a deeply
pipelined structure and reduces stalls using techniques such
as the state prefetch logic, latch-based context memory and
separate FSMs. It is also capable of decoding up to two
bypass bins per cycle. The benefits of these techniques are
summarized in Table IX. The decoder achieves up to 1.06
bin/cycle for high bit-rate common test bitstreams, and 1.44
bin/cycle under the theoretical worst-case scenario. With the
clock rate at 1.6 GHz after place-and-route, the throughput
reaches 1696 Mbin/s, which is sufficient to real-time decode
high-tier video bitstreams at level 6.2 (8K UHD at 120 fps).
For applications requiring sub-frame latency, it also supports
real-time decoding main-tier bitstreams at level 5.1 (4K UHD
at 60 fps).
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Fig. 12: Histogram of the required decoding cycles per CTU
for two cases of bitstreams: AI-coded Nebuta at QP=22 and
LD-coded BQ Terrace at QP=37. The former has high bit-rate
and high throughput, and the latter has low bit-rate and low
throughput as listed in Table IV.

Technique Applied Benefit
Deeply Pipelined Architecture high clock rate at 1.6 GHz

(Section II-B and II-C) after place and route

State Prefetch Logic reduces the impact of stalls to only

(Section II-B) 12% throughput degradation without
affecting the critical path1

Latch-based Memory reduces overall area and power by

(Section II-E and IV-A) 17.3% and 52.0%, respectively
(compared to register-based design)

Separate FSM for bypass bins increases throughput by up to 33%1
(Section III-A)

Multi-bypass-bin Decoding increases throughput by up to 15%1
(Section III-B)

1 with test sequence Nebuta (QP = 22)

TABLE IX: Summary of the proposed techniques

APPENDIX A
WORST-CASE PERFORMANCE ANALYSIS

According to [1], the worst-case performance at three dif-
ferent granularities: within a CTU, within a frame, and across
multiple frames, are derived as follows:

• Within a CTU: HEVC defines that the maximum number
of coded bits for a CTU should be less than

5

3
∗ (CtbSizeY ∗ CtbSizeY ∗ BitDepthY+

2 ∗ (CtbWidthC ∗ CtbHeightC) ∗ BitDepthC)
(2)

where CtbSizeY is the size of the luma coding tree
block (CTB), CtbWidthC and CtbHeightC are the
width and height of the chroma CTB, respectively, and
BitDepthY and BitDepthC are the bit depths of luma
and chroma samples, respectively. For a given number of
coded bits, the maximum number of corresponding bins
are achieved when the bit-to-bin ratio is the minimum.
For context-coded bins, since the minimum probability of
the least probable symbol of CABAC in HEVC is 0.01875
before quantization [3], according to the Shannon entropy
theorem, the minimum bit-to-bin ratio is

−log2(1− 0.01875) = 0.02731. (3)

For bypass bins, the ratio is simply 1, and we ignore
terminate bins since they take up less than 1% of the
total number of bins.
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When analyzing the maximum bin-rate under worst-case
scenario, the luma CTB size is assumed to be the smallest
defined size of 16×16 samples based on the fact that
more CTUs in a frame implies more total bins. In this
case, CtbSizeY is 16, CtbWidthC and CtbHeightC are
8, and the bit depths BitDepthY and BitDepthC are
both assumed to be 8. According to Eq. 2, the maximum
number of coded bits is 5120 per CTU.
Since the bit-to-bin ratio of the context-coded bins are
much lower than that of the bypass bins, the 5120 coded
bits are assumed to be composed by the maximum possi-
ble number of context-coded bins plus bypass bins for the
rest. This is achieved by setting the size of coding blocks,
prediction blocks and transform blocks in the CTU to be
8×8, 4×8 (or 8×4) and 4×4 luma samples, respectively.
The prediction mode is assumed to be the inter-prediction
mode, which signals more bins than the intra-prediction
mode. Based on these assumptions, the maximum number
of context-coded bins (Table X) is 882. According to
Eq. 3, it will be compressed into approximately 24
bits under the minimum bit-to-bin ratio. Therefore, the
number of bypass bins is 5120− 24 = 5096. By adding
up the context-coded and bypass bins, the theoretical
maximum number of bins per CTU is 5980.

• Within a Frame: The maximum number of bins per
frame, BinCountsInNalUnits, is defined to be less than
or equal to

32

3
∗NumBytesInVclNalUnits+

RawMinCuBits ∗ PicSizeInMinCbsY

32
.

(4)

In this equation, RawMinCuBits ∗ PicSizeInMinCbsY
can be computed in most common cases as

PicWidthY ∗ PicHieghtY ∗ BitDepthY+

2 ∗ (PicWidthC ∗ PicHieghtC ∗ BitDepthC)
(5)

where PicWidthY and PicHeightY are the frame width
and height in luma samples, respectively, and PicWidthC
and PicHeightC are the frame width and height in
chroma samples, respectively. NumBytesInVclNalUnits
is defined under two cases. First, if the frame is the first
frame of a sequence, it is defined as

NumBytesInVclNalUnits =

1.5

MinCR

(
MAX(PicSizeInSamplesY,

MaxLumaSr

300
)+

MaxLumaSr ∗AuCpbExtraTime
) (6)

where MinCR is the minimum compression ratio,
PicSizeInSamplesY is the number of luma samples
within a frame, and MaxLumaSr is the maximum
luma sample rate. AuCpbExtraTime is defined as
AuCpbRemovalTime[0]−AuNominalRemovalTime[0]
in [1], and is the additional time that the first frame will
stay in the coded picture buffer (CPB) on top of the
nominal duration due to the large frame size. In common
cases, it is assumed to be zero. Second, if the frame is
not the first frame of a sequence, it is defined as

NumBytesInVclNalUnits =
1.5

MinCR
∗

MaxLumaSr ∗AuCpbStayTime
(7)

Syntax Element (SE) Context-coded Num. SE
Bins per SE per CTU

sao merge left flag 1 1
sao merge up flag 1 1
sao type idx luma 1 1

sao type idx chroma 1 1
split cu flag 1 1

cu transquant bypass flag 1 4
cu skip flag 1 5

pred mode flag 1 4
part mode 3 4
merge flag 1 8

inter pred idc 2 8
ref idx l0 (or l1) 2 8

mvp l0 flag (or l1) 1 8
abs mvd greater0 flag 1 8
abs mvd greater1 flag 1 8

rqt root cbf 1 4
split transform flag 1 4

cbf cb 1 4
cbf cr 1 4

cbf luma 1 16
cu qp delta abs 5 4

transform skip flag 1 16
last sig coeff x prefix 3 24
last sig coeff y prefix 3 24

sig coeff flag 1 360
coeff abs level greater1 flag 1 192
coeff abs level greater2 flag 1 24

TABLE X: The distribution of context-coded bins within a
CTU under the maximum context-coded bins assumption. The
sizes of a CTB, CB, PB and TB are 16×16, 8×8, 4×8 (or
8×4), and 4×4, respectively.

where AuCpbStayTime is defined as
AuCpbRemovalTime[n]−AuCpbRemovalTime[n− 1]
for the nth frame in [1], and is the duration of time
that the frame would stay in CPB. This time is usually
assumed to be the reciprocal of the sequence frame rate.
In most common cases, Eq. 6 and 7 can be computed as

NumBytesInVclNalUnits =
1.5

MinCR
∗
MaxLumaSr

FR

where FR is the frame rate.
• Across Multiple Frames: HEVC directly defines the

maximum bit-rate, MaxBR, at each bitstream level, and
also restricts the maximum overall bin-to-bit ratio as 4/3
using cabac zero word. Therefore, the maximum bin-
rate across multiple frames is 4 ∗MaxBR/3 for frames
within CPB.
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