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ABSTRACT
High Efficiency Video Coding (HEVC) is the latest video

standard that specifies video resolutions up to 8K Ultra-HD
(UHD) at 120 fps to support the next decade of video appli-
cations. This results in high throughput requirements for the
Context Adaptive Binary Arithmetic Coding (CABAC) en-
tropy decoder, which was already a well-known bottleneck in
H.264/AVC. Several modifications were made to the HEVC
CABAC to address the throughput challenges. This work
leverages these improvements in the design of a high through-
put HEVC CABAC decoder. The proposed design uses a
deeply pipelined architecture to achieve a high clock rate.
Additional techniques such as state prefetch logic, latched-
based context memory, and separate finite state machines are
applied to minimize stall cycles, while multi-bypass bins de-
coding is used to further increase the throughput. The de-
sign is synthesized in a IBM 45nm SOI process, and achieves
throughputs up to 2014 and 2748 Mbin/s under common and
worst-case test conditions, respectively, at 1.9 GHz operating
frequency. The results show that the design is sufficient to
decode video bitstreams in real-time at Level 6.2, or at Level
6.0 for applications requiring sub-frame latency.

Index Terms— CABAC, High Efficiency Video Coding
(HEVC), H.265, Video Compression

1. INTRODUCTION

High Efficiency Video Coding (HEVC), developed by the
Joint Collaborative Team on Video Coding (JCT-VC) as the
latest video compression standard, was approved as an ITU-
T/ISO standard in early 2013 [1]. HEVC achieves 2× higher
coding efficiency than it’s predecessor H.264/AVC, and sup-
ports resolutions up to 4320p, or 8K Ultra-HD (UHD) [2].
HEVC uses Context Adaptive Binary Arithmetic Coding
(CABAC), a form of entropy coding, to achieve high coding
efficiency [3]. However, CABAC is a well-known throughput
bottleneck in H.264/AVC codecs, particularly in the decoder
due to the highly serial dependencies caused by several feed-
back loops within the decoding flow. Efforts have been made
to revise the CABAC in HEVC with many throughput-aware
improvements, such as reduced memory requirements, re-
duced context-coded bins and grouping of bypass bins [4].
This work will describe an architecture that fully leverages
these features to achieve a high-throughput CABAC decoder.

Previous works on the CABAC decoder, mostly for the
H.264/AVC standard, attempt to expose the parallelism within
the fixed algorithms. On one hand, pipelining is an effective
way of extending parallelism at the temporal domain. How-
ever, tight feedback loops at the bin level make the pipelined
architecture suffer from an excessive number of stalls [5, 6].
On the other hand, multi-bin per cycle decoding explores the
parallelism by adding additional decoding logic. Many de-
signs decode up to two bins per cycle [7, 8, 9, 10, 11], but this
comes at the cost of decreased clock rate. Prediction-based
decoding can be used in the multi-bin case to save the hard-
ware overhead of prefetching decoding information for the
extra bins [11, 12], though it also lowers the throughput due
to prediction miss penalty and extra critical path delay.

This work proposes an architecture for the CABAC de-
coder in HEVC with the goal of achieving the highest pos-
sible throughput in terms of bins per second. Section 2 in-
troduces the techniques used to exploit the parallelism for
a high-throughput decoder. Specifically, it will describe a
deeply pipelined architecture employing a multi-bypass bins
decoding scheme that incorporates features such as the state
prefetch logic, latch-based context memory and separate fi-
nite state machines to minimize stalls. Section 3 presents the
experimental and analytical results for the average and worst-
case conditions, respectively. The synthesized throughput,
area and power will also be reported.

2. PROPOSED CABAC DECODER ARCHITECTURE

In this section, we discuss several architectural techniques
that are motivated by the high-throughput features of CABAC
in HEVC. These techniques seek to increase two key factors,
namely clock rate (cycles per second) and average number
of decoded bins per clock cycle, to realize a high-throughput
CABAC decoder measured in bins per second.

2.1. Architecture Overview

Figure 1 illustrates the block diagram of the proposed CABAC
decoder architecture. The bitstream parser (BP) buffers the
incoming bitstream and feeds the arithmetic decoder (AD)
according to the AD decoding mode. There are four decod-
ing modes, which invoke four different decoding processes:
context-coded bin decoding (CTX), bypass bin decoding
(BPS), multi-bypass bins decoding (mBPS) and terminate
bin decoding (TRM). With the request of a decoding process,
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Fig. 1: The block diagram of the CABAC decoder for HEVC. Red blocks represent the stage registers used for deep pipelining.

the corresponding decoding engine (CTX-E, BPS-E, mBPS-
E or TRM-E) would be activated to perform the operation.
The decoded bins are then reassembled at the de-binarizer
(DB) into syntax elements. The rest of the decoder is re-
sponsible for gathering decoding information for AD. First,
the decoding mode at each cycle is determined by two finite
state machines, BPS-FSM and CTX-FSM, according to the
HEVC-compliant decoding syntax. Only one out of the two
FSMs controls AD within a single cycle, which is decided
by the FSM Selector based on previously decoded syntax
elements. In addition, if the decoding mode invokes the CTX
process, the estimation of bin probability as modeled by the
context variables (CVs) is also required. CVs are initialized
and stored in the context memory (CM), and the required one
for decoding is retrieved by the context selector (CS). CS is
only controlled by CTX-FSM. After the CTX process, the
updated CV is written back to CM for future access.

Among the decoding engines in AD, CTX-E dominates
the decoding complexity and contains the critical path of AD.
Therefore, we optimize CTX-E using the techniques intro-
duced in [13] for a 22% reduction in delay.

2.2. Deep Pipelining with State Prefetch Logic

The architecture discussed in Section 2.1 is pipelined for
high-throughput decoding. The pipeline stages are shown in
Figure 1, in which the red blocks represent the stage registers.
The function blocks are divided into two groups, the data path
and the control path. The data path consists of two pipeline
stages: AD and DB. The control path is further divided into
two sub-paths based on the two FSMs. The BPS-FSM path
only has one stage that controls the data path directly, while
the CTX-FSM has a deeper three-stage pipeline, includ-
ing CTX-FSM, CS and CM. The overall design is a deeply
pipelined five-stage structure. If the next decoder state de-
pends on the decoded syntax element of the current state, this
architecture could impose up to four stall cycles.

State prefetch logic is introduced to eliminate the ma-

jority of stalls imposed by the tight dependencies described
above. Figure 2a shows an example of how the prefetch logic
works. Based on the binary value of the decoded bin at the
current decoder state, there are two choices for the next states.
As in the case of the syntax element last sig coeff x prefix,
if its first bin is 1, the decoding will continue to its second
bin; otherwise, the decoding will jump to the first bin of
last sig coeff y prefix. The next state logic of the FSM will
prefetch both of the possible states, and the decision is de-
layed until the bin being decoded. Following this manner,
the FSM logic becomes a binary decision tree (BDT). The
construction of the BDT is a trade-off between number of
states and number of stalls. If the BDT is fully expanded,
the number of states would grow exponentially that its logic
delay becomes part of the critical path and affects throughput.
To balance between the two aspects, the BDT is optimized to
eliminate most of the throughput-critical stalls while keeping
the number of states to a minimum. Figure 2b shows another
case where the stalls are kept. The FSM stalls until the po-
sition of the last significant coefficient being decoded, so it
can select the CVs for syntax elements sig coeff flag without
fully expanding the BDT, which saves dozens of states.

The number of possible next states at each pipeline stage
grows exponentially with the depth of the pipeline. To resolve
one state at the AD stage for decoding requires CTX-FSM
to compute next eight possible states at every cycle since it
occurs three stages before AD. BPS-FSM, though only has
the control path depth of one, still needs to compute next four
possible states due to the multi-bypass bins decoding scheme,
which will be discussed in Section 2.5. At each pipeline stage,
the bins decoded by AD at previous cycle are used to select
the correct inputs states from all input states, as shown by the
mux at the beginning of stage CS, CM and AD in Figure 1.

2.3. Latch-Based Context Memory

The state prefetch logic addresses the stall issue for the deeply
pipelined architecture; nevertheless, it also brings higher
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Fig. 2: Parts of the binary decision tree (BDT) for the FSM
prefetch logic. (a) A fully expanded BDT avoids the need for
stall cycles. (b) Stalls are kept to save dozens of extra states.

computational requirements to the hardware. This concern is
most significant for CM, where two context variables need to
be prefetched as CM occurs in the stage before AD. Conven-
tional architectures use SRAM for low area and low power
memory access. Some works [5, 8] implement extra caches to
achieve multiple reads and writes within the same cycle. But
these designs cannot support truly random high-bandwidth
memory access as required by the state prefetch logic. HEVC
has 3× fewer contexts than H.264/AVC. Thus, the required
CM space reduces to 1 kbit, which makes the all-cache
CM implementation a more practical option. An all-cache
implementation is also beneficial for Wavefront Parallel Pro-
cessing (WPP), a high level parallelism tool introduced in
HEVC. WPP requires the CABAC decoder to replicate its
context states for parallel processing, and an all-cache CM
can shorten the latency of this process.

Latch-based cache requires smaller area and consumes
less power when compared to register-based cache. To ensure
glitch-free latch access, Figure 3 demonstrates the design of
the latch enable signal. The signal coming into the enable
(EN) port of the latch is constrained to settle within the first
half of the clock; thus only half of the clock cycle is available
for latch updates. This is not an issue for the deeply pipelined
architecture, as both the write data (wData) and write address
(wAddr) signals come from the pipeline stage registers, and
the timing requirement can be easily met.

Table 1 lists the comparison of area and power between
all three possible memory implementations. The latch-based
design takes only 15% more area than SRAM, but reduces
power consumption by 1.7×.
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Clock	  

wData 

Fig. 3: Glitch-free latch enable design.

Memory Design Area (eq. gate count) Power (mW)
SRAM 11.7K 8.10

Register-based 20.2K 13.10
Latch-based 13.4K 4.68

Table 1: Comparison between different types of 1kbit mem-
ory implementation for CM. The power is measured under a
2GHz clock and 100% memory access pattern.

2.4. Separate FSM for Bypass Bins

HEVC has fewer context-coded bins than H.264/AVC, re-
sulting in a larger proportion of bypass bins. In addition,
most of the bypass bins are grouped together to reduce the
amount of switching between bypass bins and context-coded
bins. These observations lead to the design of separate finite
state machines (FSMs) for context-coded bins (CTX-FSM)
and grouped bypass bins (BPS-FSM). The FSM Selector is
used to select the FSM that should be enabled for each cycle.
CTX-FSM can handle all decoding modes except the mBPS
mode, while BPS-FSM only operates for the grouped bypass
bins with the BPS or mBPS mode. BPS-FSM does not man-
age all bypass bins, however, as that complicates the logic in
the FSM Selector to switch between FSMs frequently, creat-
ing a longer critical path. As discussed in Section 2.2, the
CTX-FSM path is divided into three stages to support CS and
CM while maintaining a short critical path. As CS and CM
are not needed for bypass bins, the BPS-FSM path only has
one stage. This reduces the stalls for the bypass coded bins,
particularly for the syntax element coeff abs level remaining
where the binarizaton of the next syntax element depends on
the value of the current one.

2.5. Multi-Bypass Bins Decoding

Grouping of bypass bins also increases the benefit of decod-
ing more than one bypass bin per cycle. The logic latency
of BPS-E is around half of the optimized CTX-E. Therefore,
without increasing the AD stage delay, the deeply pipelined
architecture can decode up to two bypass bins per cycle
with mBPS-E, which concatenates two BPS-Es. The corre-
sponding decoding mode, mBPS, is used for the bins of co-
eff sign flag and coeff abs level remaining. Since the number
of bins combined from these two syntax elements account for
at least 10% to 20% of the total number of bins in common
video bitstreams, this scheme can improve the throughput
significantly. To support mBPS, the BDT width of the BPS-
FSM control path needs to be doubled, as the prefetch logic
has to compute next four possible states instead of two.
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Class Sequence QP Coding Bit Rate Bins/Cyc.Struct. (Mbps)

A

Traffic 22
AI 101.89 0.83

(WQXGA)

LD 13.83 0.70
RA 13.24 0.73

People 22
AI 104.72 0.85

On Street LD 37.56 0.78
RA 32.83 0.78

Nebuta 22
AI 403.02 1.06
LD 239.32 1.02
RA 216.38 1.01

Steam 22
AI 100.39 0.92

Locomotive LD 30.52 0.82
RA 23.55 0.82

B

Kimono 22
AI 22.25 0.90

(Full HD)

LD 5.21 0.81
RA 4.80 0.82

Park Scene 22
AI 52.75 0.85
LD 7.97 0.70
RA 7.69 0.75

Cactus 22
AI 105.39 0.83
LD 20.05 0.74
RA 18.44 0.75

BQ Terrace 22
AI 180.18 0.90
LD 52.82 0.77
RA 39.64 0.78

Basketball 22
AI 71.14 0.81

Drive LD 19.86 0.76
RA 17.40 0.77

Table 2: Simulated decoding performance of the proposed
design for common test bitstreams [14]. Each sequence is
coded with three configurations: All Intra (AI), Low Delay
(LD) and Random Access (RA).

3. EXPERIMENTAL RESULTS

3.1. Experimental and Synthesis Results

Table 2 shows the simulated decoding performance of the pro-
posed architecture for common test bitstreams [14]. In gen-
eral, the bins per cycle of high bit-rate bitstreams, especially
the all-intra (AI) coded ones, is higher than that of low bit-
rate bitstreams. For example, Nebuta, with a bit-rate up to
400 Mbps, can be decoded at 1.06 bins/cycle.

The design is synthesized in a IBM 45nm SOI process,
and achieves a maximum clock rate of 1.9 GHz. For the AI
coded Nebuta bitstream, the throughput reaches 2014 Mbin/s.
This throughput is already sufficient for the real-time decod-
ing of Level 6.2 video bitstreams. The total gate count of the
CABAC decoder is 85.3K (WPP not supported). The con-
text memory and the line buffers take up around 30% of this
area. The power consumption at synthesis is 26.0 mW. Ta-
ble 3 summarizes the comparison with previous works.

3.2. Analytical Worst Case Performance

HEVC defines the maximum bin-rate limits at three granular-
ities: within a coding-tree unit (CTU) (based on the constraint
of maximum bits per CTU), within a frame (based on the con-
straint of maximum bins per slice-coded network abstraction
layer unit), and across frames (based on the maximum bit-

Lin [7] Liao [8] Choi [11] This Work
Standard AVC AVC HEVC HEVC

Tech. UMC UMC Samsung IBM
90nm 90nm 28nm 45nm SOI

Gate Count 82.4K 51.3K 100.4K 85.3K
Max. Freq. 222 264 333 1900(MHz)

Bins/Cyc. 1.96 1.84 1.30 1.06
(130 Mbps) (403 Mbps)

Throughput 435 486 433 2014(Mbin/s)

Table 3: Comparison on the results of different CABAC de-
coder implementations. WPP is not supported in this work.

Level 4.0 4.1 5.2 6.0 6.1 6.2
Per CTU 1550 3100 24800 24800 49600 99200

Per Frame 292 585 2540 2510 5020 12900
Multi-Frame 40 67 320 320 640 1070

Table 4: The worst-case bin-rate (Mbin/s) limits.

rate). These granularities correspond to decoding latencies
of a CTU, a frame and multiple frames. Reducing latency is
important for applications such as video conferencing where
sub-frame latency is required. The worst-case limits are listed
in Table 4. The limits tend to be lower when larger latency
is tolerated since workload can be averaged across CTUs and
frames. The decoder throughput needs to be higher than these
limits to guarantee real-time low latency decoding.

The worst case scenario is computed for a CTU size of
16×16 luma samples and the maximum total bins with the
maximum number of context-coded bins. The maximum
amount of context-coded bins per 16×16 CTU is 884 assum-
ing 4×4 prediction units and 4×4 transform units, and the bit
limit per 16x16 CTU with bit-depth of 8 is 5120. Considering
the maximum bin-to-bit compression ratio for the context-
coded bins at 0.0273, the maximum amount of bypass bins
is 5096. Taking the number of bypass bins decoded with
the mBPS mode and also the stalls into account, the design
in this work decodes at 1.44 bins/cycle under the theoretical
worst case. The corresponding throughput is 2748.3 Mbin/s.
In Table 4, we shade in grey all bin-rate limits that can be
achieved by this design in real-time for each granularity.

4. CONCLUSION

In this paper, we propose the hardware architecture of a
CABAC decoder for HEVC. The design features a deeply
pipelined structure and reduces stalls using techniques such
as the state prefetch logic, latch-based context memory and
separate FSMs. It can also decode up to two bypass bins per
cycle. The decoder achieves up to 1.06 bins/cycle for high
bit-rate common test bitstreams, and 1.44 bins/cycle under
the worst-case scenario. With the synthesized clock rate at
1.9 GHz, the throughput reaches above 2000 Mbin/s, which
is sufficient to real-time decode video bitstreams at Level 6.2
(8K UHD at 120 fps), or at Level 6.0 (8K UHD at 30 fps) for
applications requiring sub-frame latency.
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