
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 7, NO. 6, DECEMBER 2013 1029

Core Transform Design in the High Efficiency
Video Coding (HEVC) Standard

Madhukar Budagavi, Senior Member, IEEE, Arild Fuldseth, Gisle Bjøntegaard, Vivienne Sze, Member, IEEE,
and Mangesh Sadafale

Abstract—This paper describes the core transforms specified for
the high efficiency video coding (HEVC) standard. Core transform
matrices of various sizes from 4 4 to 32 32 were designed as
finite precision approximations to the discrete cosine transform
(DCT). Also, special care was taken to allow implementation
friendliness, including limited bit depth, preservation of symmetry
properties, embedded structure and basis vectors having almost
equal norm. The transform design has the following properties:
16 bit data representation before and after each transform stage
(independent of the internal bit depth), 16 bit multipliers for all
internal multiplications, no need for correction of different norms
of basis vectors during quantization/de-quantization, all trans-
form sizes above 4 4 can reuse arithmetic operations for smaller
transform sizes, and implementations using either pure matrix
multiplication or a combination of matrix multiplication and
butterfly structures are possible. The transform design is friendly
to parallel processing and can be efficiently implemented in soft-
ware on SIMD processors and in hardware for high throughput
processing.

Index Terms—Discrete cosine transform, high efficiency video
coding, transform design.

I. INTRODUCTION

T HE HEVC standard [1] specifies core transform matrices
of size 4 4, 8 8, 16 16, and 32 32 to be used for

two-dimensional transforms in the context of block-based mo-
tion-compensated video compression. Similar to previous video
coding standards, HEVC specifies two-dimensional transforms
resembling the inverse discrete cosine transform (IDCT) for all
transform sizes. Multiple transform sizes improve compression
performance, but also increase the implementation complexity.
Hence a careful design of the core transforms is needed. HEVC
also specifies an alternate 4 4 integer transform based on the
Discrete Sine Transform (DST) for coding 4 4 Intra blocks
[2]. The focus of this paper will be on the IDCT-based HEVC
core transform.
In the H.261, MPEG-1, H.262/MPEG-2, and H.263 video

coding standards, an 8-point IDCT was specified with infinite

Manuscript received January 16, 2013; revised May 10, 2013; accepted June
13, 2013. Date of publication June 20, 2013; date of current version November
18, 2013. The guest editor coordinating the review of this manuscript and ap-
proving it for publication was Prof. Yun He.
A. Fuldseth and G. Bjøntegaard are with Cisco Systems Norway, 1366

Lysaker, Norway (e-mail: arild.fuldseth@cisco.com; gbjonteg@cisco.com).
M. Budagavi and V. Sze are with Texas Instruments, Inc., Dallas, TX 75243

USA (e-mail: madhukar@ti.com, sze@ti.com).
M. Sadafale is with Signalchip Innovations, Bangalore 560 052, India,

(e-mail: mangesh@signalchip.com).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/JSTSP.2013.2270429

precision. To ensure interoperability and to minimize drift be-
tween encoder and decoder implementations using finite preci-
sion, two features were included in the standards. First, block-
level periodic intra refresh was mandatory. Second, a confor-
mance test for the accuracy of the IDCT using a pseudo-random
test pattern was specified.
In the H.264/MPEG-4 Advanced Video Coding (AVC) stan-

dard [3], the problem of encoder-decoder drift was solved by
specifying integer valued 4 4 and 8 8 transform matrices.
The transforms were designed as approximations to the IDCT
with emphasis on minimizing the number of arithmetic oper-
ations. These transforms had large variations of the norm of
the basis vectors. As a consequence of this, non-flat default
de-quantization matrices were specified to compensate for the
different norms of the basis vectors [4].
During the development of HEVC, several different approx-

imations of the IDCT were studied for the core transform. The
first version of the HEVCTestModel HM1 used the H.264/AVC
transforms for 4 4 and 8 8 blocks and integer approxima-
tion of Chen’s fast IDCT [5] for 16 16 and 32 32 blocks.
The HM1 inverse transforms had the following characteristics
[6], [7]:
• Non-flat de-quantization matrices for all transform sizes:
While acceptable for small transform sizes, the implemen-
tation cost of using de-quantization matrices for larger
transforms is high because of larger block sizes,

• Different architectures for different transform sizes: This
leads to increased area since hardware sharing across dif-
ferent transform sizes is difficult,

• A 20-bit transpose buffer used for storing intermediate re-
sults after the first transform stage in 2D transform: An in-
creased transpose buffer size leads to larger memory and
memory bandwidth. In hardware, the transpose buffer area
can be significant and comparable to transform logic area
[8],

• Full factorization architecture requiring cascaded mul-
tipliers and intermediate rounding for 16- and 32-point
transforms: This increases data path dependencies and
impacts parallel processing performance. It also leads to
increased bit width for multipliers and accumulators (32
bits and 64 bits respectively in software). In hardware, in
addition to area increase, it also leads to increased circuit
delay thereby limiting the maximum frequency at which
the inverse transform block can operate.

To address the complexity concerns of the HM1 transforms,
a matrix multiplication based core transform was proposed in
[9] and eventually adopted as the HEVC core transform. The

1932-4553 © 2013 IEEE

1030 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 7, NO. 6, DECEMBER 2013

design goal was to develop a transform that was efficient to im-
plement in both software on SIMD machines and in hardware.
Alternative proposals to the HEVC core transform design can
be found in [10]–[12].
The HEVC core transform matrices were designed to have

the following properties [9]:
• Closeness to the IDCT
• Almost orthogonal basis vectors
• Almost equal norm of all basis vectors
• Same symmetry properties as the IDCT basis vectors
• Smaller transform matrices are embedded in larger trans-
form matrices

• 8-bit representation of transform matrix elements
• 16-bit transpose buffer
• Multipliers can be represented using 16 bits or less with no
cascaded multiplications or intermediate rounding

• Accumulators can be implemented using less than 32 bits
This paper is organized as follows. Section II describes

the HEVC core transform design in detail, including matrix
elements selection, intermediate scaling and the associated
quantization and de-quantization. In Section III, complexity
analysis including arithmetic operation counts and hardware
analysis is provided. Section IV presents coding performance of
the HEVC transforms and also coding performance comparison
to the H.264/AVC transforms. Finally, conclusions are given in
Section V.

II. HEVC CORE TRANSFORM DESIGN

A. Use of Transforms in Block-Based Video Coding

In the block-based hybrid video coding approach, transforms
are applied to the residual signal resulting from inter- or intra-
frame prediction as shown in Fig. 1. At the encoder, the residual
signal of a frame is divided into square blocks of size
where and is an integer. Each residual block ()
is then input to a two-dimensional forward transform.
The two-dimensional transform can be implemented as a sepa-
rable transform by applying an -point one-dimensional trans-
form to each row and each column separately. The resulting

transform coefficients () are then subject to quanti-
zation (which is equivalent to division by quantization step size

) to obtain quantized transform coefficients (). At the
decoder, the quantized transform coefficients are then de-quan-
tized (which is equivalent to multiplication by). Finally, a
two-dimensional separable inverse transform is applied
to the de-quantized transform coefficients () resulting in
a residual block of quantized samples which is then added to
the intra- or inter-prediction samples to obtain the reconstructed
block.
Typically, the forward- and inverse transform matrices are

transposes of each other and are designed to achieve near loss-
less reconstruction of the input residual block when concate-
nated without the intermediate quantization and de-quantization
steps.
In video coding standards such as HEVC, the de-quantiza-

tion process and inverse transforms are specified, while the for-
ward transforms and quantization process are chosen by the im-
plementer (subject to constraints on the bit-stream). In the fol-

Fig. 1. Block-based hybrid video coding. (a) Encoder, (b) Decoder. is the
transform matrix and is the quantization step size.

lowing, however, and unless otherwise specified, we will dis-
cuss the design and the properties of the HEVC core transforms
in terms of the forward transform matrix. It should be under-
stood that the inverse transforms are specified in the HEVC stan-
dard as the corresponding transpose matrices.

B. Discrete Cosine Transform

The transform coefficients of an -point 1D DCT ap-
plied to the input samples can be expressed as

(1)

where . Elements of the DCT transform
matrix are defined as

(2)

where and where is equal to 1 and
for and respectively. Furthermore, the basis vectors
of the DCT are defined as where

.
The DCT has several properties that are considered

useful both for compression efficiency and for efficient
implementation.
1) The basis vectors are orthogonal, i.e., for .
This property is desirable for compression efficiency by
achieving transform coefficients that are uncorrelated.

2) The basis vectors of the DCT have been shown to provide
good energy compaction which is also desirable for com-
pression efficiency.

3) The basis vectors of the DCT have equal norm, i.e.,
for . This property is desirable for

simplifying the quantization/de-quantization process. As-
suming that equal frequency-weighting of the quantization
error is desired, equal norm of the basis vectors eliminates
the need for quantization/de-quantization matrices.

4) Let . The elements of a DCT matrix of size
is a subset of the elements of a DCT matrix of

BUDAGAVI et al.: CORE TRANSFORM DESIGN IN THE HEVC STANDARD 1031

size . More specifically, the basis vectors
of the smaller matrix is equal to the first half of the even
basis vectors of the larger matrix. This property is useful
to reduce implementation costs as the same multipliers can
be reused for various transform sizes.

5) The DCT matrix can be specified by using a small number
of unique elements. By examining the elements of (2) it
can be shown that the number of unique elements in a DCT
matrix of size is equal to . As shown in
Section III, this is particularly advantageous in hardware
implementations.

6) The even basis vectors of the DCT are symmetric, while
the odd basis vectors are anti-symmetric. This property is
useful to reduce the number of arithmetic operations.

7) The coefficients of a DCT matrix have certain trigono-
metric relationships that allows for a reduction of the
number of arithmetic operations beyond what is possible
by exploiting the (anti-)symmetry properties. These prop-
erties can be utilized to implement fast algorithms such as
the Chen’s fast factorization [5].

C. Finite Precision DCT Approximations

The core transforms matrices of HEVC are finite precision
approximations of the DCT matrix. The benefit of using finite
precision in a video coding standard is that the approximation
to the real-valued DCT matrix is specified in the standard
rather than being implementation dependent. This avoids en-
coder-decoder mismatch and drift caused by manufacturers
implementing the IDCT with slightly different floating point
representations. On the other hand, a disadvantage of using
approximate matrix elements is that some of the properties
of the DCT discussed in Section II-B may not be satisfied
anymore. More specifically, there is a trade-off between the
computational cost associated with using high bit-depth for the
matrix elements and the degree to which some of the conditions
of Section II-B are satisfied.
A straightforward way of determining integer approxi-

mations to the DCT matrix elements is to scale each matrix
element with some large number (typically between and
) and then round to the closest integer. However, this

approach does not necessarily result in the best compression
performance. As shown in Section II-D, for a given bit-depth of
the matrix elements, a different strategy for approximating the
DCT matrix elements results in a different trade-off between
some of the properties of Section II-B.

D. HEVC Core Transform Design Principles

The DCT approximations used for the core transforms of
HEVC were chosen according to the following principles. First,
properties 4, 5 and 6 of Section II-B were satisfied without any
compromise. This choice ensures that several implementation
friendly aspects of the DCT are preserved. Second, for proper-
ties 1, 2, 3 and 7, there were trade-offs between the number of
bits used to represent each matrix element and the degree by
which each of the properties were satisfied.
To measure the degree of approximation for properties 1, 2,

and 3, the followingmeasures are defined for an integer -point
DCT approximation with scaled matrix elements equal to

TABLE I
COMPARISON OF TRANSFORM DESIGN METHODS.

and basis vectors equal to where
.

1) Orthogonality measure: ,
2) Closeness to DCT measure:
3) Norm measure:
where , are the DCT matrix elements of
(2), and the scale factor is defined as .
As a result of careful investigation, it was decided to repre-

sent each matrix coefficient with 8 bit (including sign bit), and
choosing the elements of the first basis vector to be equal to
64 (i.e., ,). Note that this results
in a scale factor of for the HEVC transform matrix
when compared to the orthonormal DCT. The remaining matrix
elements were hand-tuned (within the constraints of properties
4, 5, and 6) to achieve a good balance between properties 1,
2 and 3. The hand-tuning was performed as follows. First, the
real-valued scaled DCT matrix elements, , were derived.
Next, for each unique number in the resulting matrices, each
integer value in the interval [] around was exam-
ined and the resulting values of , , and were calcu-
lated. Since there are only 31 unique numbers in the transform
matrices (see Section II-E), various permutations can be exam-
ined systematically (although not exhaustively). The final in-
teger matrix elements were chosen to give a good compromise
between all measures , , and . The resulting worst case
values of , , and are shown in the second column of
Table I. The norm was considered to be sufficiently close to 1
(i.e., the norm measure is sufficiently close to 0) to justify not
using a non-flat default de-quantizationmatrix in HEVC (i.e., all
transform coefficients scaled equally).
For comparison purposes, the resulting measures when mul-

tiplying the real-valued DCT matrix elements with
and rounding to the closest integer are listed in the third column
of Table I. As can be seen from the table, although the matrix
elements of the HEVC transforms are farther from the scaled
DCT matrix elements, they have better orthogonality and norm
properties.
Finally, by using only 8 bit representation, property 7 of

Section II-B (trigonometric relationship between matrix ele-
ments) was not easily preserved. The authors are not aware
of any trigonometric property of the HEVC core transforms
that can be utilized to reduce the number of arithmetic oper-
ations below those required when using the (anti-) symmetry
properties.

E. Basis Vectors of the HEVC Core Transforms

The left half of the 32 32 matrix specifying the 32-point
forward transform is shown in Fig. 2. The right half can be de-
rived by using the (anti-)symmetry properties of the basis vec-
tors (property 6 of Section II-B). The inverse transform matrix
of HEVC is defined as the transpose of the matrix resulting from

1032 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 7, NO. 6, DECEMBER 2013

Fig. 2. Left half of the 32 32 matrix specifying the 32-point forward trans-
form. Embedded 4-point (green shading), 8-point (pink shading) and 16-point
(yellow shading) forward transform matrices are also shown in the figure.

the figure. The 32 32matrix contains up to 31 unique numbers
as follows.

(3)

These unique numbers are elements 1 to 31 of the first column
of the forward transform matrix. Note that although the number
90 occurs three times, this is by accident and not generally true.
The unique numbers property was used in [13] to enable 25%
area reduction for hardware designs with practical throughput.
Furthermore, the coefficients of the smaller transformma-

trices (, 8, 16) can be derived from the coefficients
of the 32 32 transform matrix as:

(4)

Let denote the 4 4 transform matrix. By using (4) and
Fig. 2, can be obtained as:

(5)

The 8 8 transform matrix and the 16 16 transform
matrix can be similarly obtained from the 32 32 trans-
formmatrix as shown in Fig. 2 where different colors are used to
highlight the embedded 16 16, 8 8 and 4 4 forward trans-
formmatrices. This property allows for different transform sizes
to be implemented using the same architecture thereby facil-
itating hardware sharing between different transform sizes as
shown in Section III.
Note that from the unique numbers property of (3) and the

(anti-)symmetry properties, is also equal to:

(6)

F. Intermediate Scaling

Since the HEVC matrices are scaled by compared
to an orthonormal DCT transform, and in order to preserve the
norm of the residual block through the forward and inverse two-
dimensional transforms, additional scale factors – , ,

, – need to be applied as shown in Fig. 3. Note that
Fig. 3 is basically a fixed point implementation of the transform
and quantization in Fig. 1. While the HEVC standard speci-
fies the scale factors of the inverse transform (i.e., ,),
the HEVC reference software also specifies corresponding scale
factors for the forward transform (i.e., ,). The scale fac-
tors were chosen with the following constraints:
1) All scale factors shall be a power of two to allow the scaling
to be implemented as a right shift.

2) Assuming full range of the input residual block (e.g., a DC
block with all samples having maximum amplitude), the
bit depth after each transform stage shall be equal to 16 bits
(including the sign bit). This was considered a reasonable
trade-off between accuracy and implementation costs.

3) Since the HEVC matrices are scaled by , cas-
cading of the two-dimensional forward and inverse
transform will results in a scaling of for each
of the 1D row forward transform, the 1D column forward
transform, the 1D column inverse transform, and the
1D row inverse transform. Consequently to preserve the
norm through the two-dimensional forward and inverse
transforms, the product of all scale factors shall be equal
to .

The process of selecting the forward transform scale factors
is illustrated using the 4 4 forward transform as an example
in Fig. 4. When video has a bit depth of bits, the residual will

BUDAGAVI et al.: CORE TRANSFORM DESIGN IN THE HEVC STANDARD 1033

Fig. 3. Additional scale factors (, , , , ,) required to implement HEVC integer transform and quantization. (a) Forward transform and
quantization, (b) Inverse transform and quantization. 2D forward and inverse transform is implemented as separable 1D column and row transforms. is the
orthonormal DCT matrix. is the scaled approximation of the DCT matrix. where is the transform size.

Fig. 4. Intermediate scaling factor determination for forward transform so that intermediate and output values fit within 16-bits. is video bit depth and
where is the transform size. Worst case bit-depth analysis is done assuming a residual block with all samples having maximum amplitude

equal to (where is the video bit depth), as input to the first stage of the forward transform.

be in the range of requiring () bits to
represent it. In the following worst case bit-depth analysis we
will assume a residual block with all samples having maximum
amplitude equal to as input to the first stage of the forward
transform. We believe this is a reasonable assumption since all

basis vectors have almost the same norm. Note also that we are
using instead of or in the worst case
analysis since it is a power of 2. The scale factor derivation be-
comes simpler assuming input to be (which still fits within
() bits) since all the scale factors are a power of 2. For this

1034 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 7, NO. 6, DECEMBER 2013

worst case input block, the maximum value of an output sample
will be . This corresponds to the dot product of
the first basis vector (of length with all values equal to 64)
with input vector consisting of values equal to . Therefore,
with , for the output to fit within 16 bits (i.e., max-
imum value of) a scaling of is
required. Consequently, the scale factor after the first transform
stage is chosen as .
The second stage of the forward transform consists of multi-

plication of the result of the first transform stage with . The
input into the second stage of the forward transform is the output
from the first stage which is a matrix with all elements in the first
row having a value of . All other elements will be zero as
shown in Fig. 4(b). The output of multiplication with will
be a matrix with only a DC value equal to and
all remaining values equal to 0. This implies that the scaling re-
quired after the second stage of transform is in
order for the output to fit within 16 bits.
The first stage of the inverse transform consists of multiplica-

tion of the result of the forward transform with . The input
into the first stage of the inverse transform is the output ma-
trix from the forward transform which is a matrix with only
the DC element equal to . The output of multiplication
with will be a matrix with first column elements equal to

. Consequently, the scaling required after the first
stage of the inverse transform for the output to fit within 16 bits
is .
The second stage of the inverse transform consists of multi-

plication of the result of the first stage of the inverse transform
with . The input into the second stage of the inverse trans-
form is the output matrix from the first stage of inverse trans-
formwhich is amatrix with first column elements equal to .
The output of multiplication with will be a matrix with all
elements equal to . So the scaling required after the
second stage of inverse transform to get the output values into
the original range of is .
In summary the constraints imposed in this section result in

the following scale factors after different transform stages:
• After the first forward transform stage:
• After the second forward transform stage:
• After the first inverse transform stage:
• After the second inverse transform stage:

where is the bit depth of the input/output signal (e.g., 8 bit)
and .
Without quantization/de-quantization, this choice of scale

factors ensures a bit depth of 16 bit after all transform stages.
However, quantization errors introduced by the quantiza-
tion/de-quantization process might increase the dynamic range
before each inverse transform stage to more than 16 bit. For
example, consider the situation where and all input
samples to the forward transform are equal to 255. In this case,
the output of the forward transform will be a DC coefficient
with value equal to . For high QP values and
with a quantizer rounding upwards, the input to each inverse
transform stage can easily exceed the allowed 16 bit dynamic
range of [, 32767]. While clipping to 16 bit range
was considered trivial after the de-quantizer, it was considered

undesirable after the first inverse transform stage. In order to
allow for quantization error of some reasonable magnitude
and at the same time limit the dynamic range between the two
inverse transform stages to 16 bit, the choice of scale factors
for the inverse transform was finally modified as follows1:
• After the first inverse transform stage:
• After the second inverse transform stage:
The use of the inverse transform scale factors is illustrated in

Fig. 5 using the 4 4 inverse transform as an example assuming
the input to be the final output of Fig. 4.
Tables II and III summarize the different scaling factors of

the forward and inverse transform respectively when compared
to the orthonormal DCT.
The HEVC specification specifies an offset value to be added

before scaling to carry out rounding. This offset value is equal to
the scale factor divided by 2. The offset is not explicitly shown
in Figs. 3–5.
Finally, two useful consequences of using 8-bit coefficients

and limiting the bit-depth of the intermediate data to 16 bit is that
all multiplications can be represented with multipliers having 16
bits or less and that the accumulators before right shift can be
implemented with less than 32 bits for all transform stages

G. Quantization and De-Quantization

Quantization consists of division by a quantization step size
() and inverse quantization consists of multiplication by
the quantization step size. Similar to H.264/AVC [14], a quan-
tization parameter () is used to determine the quantization
step size in HEVC. can take 52 values from 0 to 51. An
increase of 1 in means an increase of the quantization step
size by approximately 12% (i.e.,). An increase of 6 leads to
an increase in the quantization step size by a factor of 2. In addi-
tion to specifying the relative difference between the step-sizes
of two consecutive values, there is also a need to define the
absolute step-size associated with the range of values. This
was done by selecting for .
The resulting relationship between and the equivalent

quantization step size for an orthonormal transform is now given
by:

(7)

Equation (7) can be also be expressed as:

(8)

where

(9)
HEVC quantization and dequantization are basically fixed

point approximations of (8). Additional scale factors and
as shown in Fig. 3 are introduced to restore the norm of the

residual block which gets modified because of the scaling used
in fixed point implementation of (8).

1Note that in the final HEVC specification [1], a clipping operation is intro-
duced after the first inverse transform stage, mainly to allow for random quanti-
zation that could be used to create “evil” bitstreams used for stress testing video
decoders. With the clipping introduced, the modification to the inverse trans-
form scale factors is not necessary but has been retained in the HEVC specifi-
cation and Test Model software for maturity reasons.

BUDAGAVI et al.: CORE TRANSFORM DESIGN IN THE HEVC STANDARD 1035

Fig. 5. Use of the inverse transform scale factors assuming the input to be the final output of Fig. 4. Video bit depth .

TABLE II
SCALING IN DIFFERENT STAGES FOR THE 2D FORWARD TRANSFORM.

TABLE III
SCALING IN DIFFERENT STAGES FOR THE 2D INVERSE TRANSFORM.

The fixed point approximation of (8) in HEVC is given by

(10)

This results in

(11)

For a quantizer output, , the de-quantizer is specified in the
HEVC standard as

(12)

where and
.
The scale factor of Fig. 3 is equal to and is ob-

tained as follows: When (i.e.,) the com-
bined scaling of the inverse transform and de-quantization in
Fig. 3 when multiplied together should result in a product of 1
to maintain the norm of the residual block through inverse trans-
form and inverse quantization i.e.,

(13)

This results in leading to being equal
to right shift by (). The scale factor in
(13) is obtained from Table III.
For the output sample of the forward transform, , a

straightforward quantization scheme can be implemented as
follows:

where , and

(15)

Note that . The value of is ob-
tained by imposing similar constraints on the combined scaling
in the forward transform and the quantizater as in (13), i.e.,

, where .

1036 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 7, NO. 6, DECEMBER 2013

Finally, is chosen to achieve the desired rounding.
To summarize, the quantizer multipliers, , and dequantizer

multipliers, , were chosen to satisfy the following conditions
1) Ensure that can be represented with signed 8 bit data
type (i.e., ,)

2) Ensure an almost equal increase in step size from one
value to the next (approximately 12%) (i.e.,

, and)
3) Ensure approximately unity gain through the quantiza-
tion and de-quantization processes (i.e.,

,)
4) Provide the desired absolute value of the quantization step
size for (i.e., for

).

III. COMPLEXITY ANALYSIS

A. Arithmetic Operations

With straightforward matrix multiplication, the number of
operations for the 1D inverse transform is multiplications
and additions. For the 2D transform, the number of
multiplications required is and the number of additions
required is . However, by utilizing the (anti-)
symmetry properties of each basis vector inherited from DCT,
the number of arithmetic operations can be significantly re-
duced. We refer to the algorithm that does this as the Even-Odd
decomposition in this paper (it was also referred to as partial
butterfly during HEVC development) [15]. Even-Odd decom-
position is illustrated below using the 4- and 8-point inverse
transform.
Consider the 4-point forward transform matrix defined in (6).

For notational simplicity the constants of (6) will be denoted
by . Using the new notation (6) becomes

(16)

The inverse transform matrix is given by . Let
be the input vector and

denote the output. The 1D 4-point inverse transform is given
by the following equation:

(17)

The Even-Odd decomposition of the inverse transform of an
-point input consists of the following three steps:
1) Calculate the even part using a subset matrix
obtained from the even columns of the inverse transform
matrix. ((18) shows an example).

2) Calculate the odd part using a subset matrix
obtained from the odd columns of the inverse transform
matrix. ((20) shows an example).

3) Add/subtract the odd and even parts to generate -point
output. ((21) shows an example).

Even-odd decomposition of the inverse 4-point transform is
given by (19) to (21):

Even part:

(18)

The even part can be further simplified as:

(19)

Odd part:

(20)

Add/sub:

(21)

The direct 1D 4-point transform using (17) would require 16
multiplications and 12 additions. The 2D transform will require
128 multiplications and 96 additions. Even-Odd decomposition
on the other hand requires a total of 6 multiplications and 8 addi-
tions for 1D transform using (19)–(21). The 2D transform using
Even-Odd decomposition will require a total of 48 multiplica-
tions and 64 additions which is 62.5% savings in number of
multiplications and 33.3% savings in number of additions when
compared to direct matrix multiplication
The 8-point 1D inverse transform is defined by the following

equation:

(22)

where is input and
is output, and is given by:

(23)

Even-odd decomposition for the 8-point inverse transform is
given by (24) to (27)

Even part:

(24)

BUDAGAVI et al.: CORE TRANSFORM DESIGN IN THE HEVC STANDARD 1037

Odd part:

(25)

Add/sub:

(26)

Note that the even part of the 8-point inverse transform is
actually a 4-point inverse transform (by comparing (24) with
transpose of in (16)) i.e.,

(27)

So the Even-Odd decomposition of the 4-point inverse trans-
form (19)–(21) can be used to further reduce computational
complexity of the even part of the 8-point transform in (24).
The direct 1D 8-point transform using (22) would require 64

multiplications and 56 additions. The 2D transform will require
1024 multiplications and 896 additions. An even-odd decompo-
sition on the other hand requires 6 multiplications for (27) and
16 multiplications for (25) resulting in a total of 22 multiplica-
tions. It requires 8 additions for (27), 12 additions for (25) and
8 additions for (27) resulting in a total of 28 additions. The 2D
transform using Even-Odd decomposition will require a total of
352 multiplications and 448 additions.
The computational complexity calculation for the 4-point and

8-point inverse transform can be extended to inverse transforms
of larger size. In general, the resulting number of multiplica-
tions and additions (excluding the rounding operations associ-
ated with the shift operations) for the two-dimensional -point
inverse transform can be shown to be

(28)

(29)

The number of arithmetic operations for the inverse trans-
form can be further reduced if knowledge about zero-valued
input transform coefficients is assumed. In an HEVC decoder,
this information can be obtained from the entropy decoding or
de-quantization process. Furthermore, for typical video content
many blocks of size will have non-zero coefficients
only in a low frequency sub-block. For example in
[16] it was found that on average around 75% of the transform
blocks had non-zero coefficients only in low frequency
sub-blocks. Computations can be saved in two ways for such
transform blocks. Fig. 6 shows the first way. Columns that are
completely zero need not be inverse transformed. So only 1D
IDCTs along columns needs to be carried out. However, all
rows will need to be transformed subsequently. The second way

Fig. 6. Efficient implementation of inverse transform of a block with non-zero
coefficients in only the low frequency sub-block. Shaded regions de-
note the regions that can contain non-zero coefficients. Only 1D IDCTs are
required along columns.

TABLE IV
ARITHMETIC OPERATION COUNTS FOR HEVC TWO-DIMENSIONAL

INVERSE TRANSFORMS.

to reduce computations is by exploiting the fact that each of the
column and row IDCT is on a vector that has non-zero values
only in the first locations. For example with ,

, roughly half the computations
for the inverse transformation can be eliminated by simplifying
(24)–(25) to

Even part:

(30)

Odd part:

(31)

In general, the number of multiplications can be reduced ap-
proximately by a factor of for the first stage and a factor
of () for the second stage. Table IV shows the number of
arithmetic operations for various values of and .
Note that the majority of the arithmetic operations listed in

Table IV can be efficiently implemented using SIMD instruc-
tions since the operations are matrix multiply operations. For
example, for an 8 8 inverse transform implementation, (25)

1038 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 7, NO. 6, DECEMBER 2013

Fig. 7. 4-point inverse transform architecture.

Fig. 8. 8-point inverse transform architecture.

can be efficiently implemented on a 4-way SIMD processor in
4 cycles v/s 16 cycles on a processor without SIMD accelera-
tion. Software performance using SIMD acceleration on various
Intel processor architectures for the 8 8, 16 16, and 32 32
transform sizes are provided in [17] and [18].

B. Hardware Analysis

1) Inverse Transform Implementation: This sub-section de-
scribes hardware implementation of the 32-point inverse trans-
form using the Even-Odd decomposition. It also shows how the
smaller sized transforms are embedded within the larger size
transforms so that hardware sharing is maximized.
Fig. 7 shows the architecture of the 4-point inverse trans-

form which is the direct implementation of (19)–(21). The even
matrix multiplication is denoted as Even4 and is implemented
using (19). The odd matrix multiplication is denoted as Odd4
and implemented in (20). The outputs of the Even4 and Odd4
blocks are added and subtracted as in (21) to get the 4-point
inverse transform output. The addition/subtraction network is
denoted as AddSub4.
Fig. 8 shows the architecture of the 8-point inverse transform

which is direct implementation of (24)–(27). The even part of
the transform is exactly the 4-point inverse transform and is im-
plemented using the architecture shown in Fig. 7. The odd part
of the transform is denoted by Odd8 and implements (25). Sim-
ilar to the 4-point inverse transform, the output of the even and
odd parts of the transform are added and subtracted to get the

Fig. 9. 32-point inverse transform architecture.

TABLE V
AREA BREAKDOWN OF DIFFERENT COMPONENTS

IN 32-POINT INVERSE TRANSFORM.

8-point inverse transform output. The addition/subtraction net-
work is denoted as AddSub8.
The Even-Odd architecture can be extended to the 16-point

and 32-point inverse transform in a similar fashion. The data
flow is shown in Fig. 9. Note that the 4-point transforms are em-
bedded within the 8-point transform which in turn is embedded
in the 16-point transform and so on. Also note that the multi-
pliers are not cascaded thereby reducing circuit delay.
The 32-point inverse transform was implemented in RTL for

a throughput of one 32-point 1D transform per cycle. A 32 32
2D transform requires 64 cycles. The implementation was syn-
thesized in 45-nm library. The 32-point inverse transform re-
quires around 130 kGates at 250 MHz. Table V lists the area
breakdown of the different components in the 32-point inverse
transform implementation.
2) Unified Forward-Inverse Transform Implementation

[19]: With the proliferation of products such as camera
phones, tablets, video-conferencing, set-top boxes with digital
video recording feature, etc., it is necessary to support video
capture in addition to video playback on the same device. As
a result both the forward and inverse transforms need to be
implemented in the same device and techniques that can reduce
the overall area of the hardware block that implements both the
forward and the inverse transform are desirable. This sub-sec-
tion describes one such technique that makes use of symmetry
between the forward and inverse transform to share hardware
between the forward and inverse HEVC transform. Examples
of unified implementations for the H.264/AVC transforms can
be found in [20], [21].

BUDAGAVI et al.: CORE TRANSFORM DESIGN IN THE HEVC STANDARD 1039

Fig. 10. 4-point forward transform architecture.

First we show the Even-Odd decomposition of the forward
transform and then show the commonality in the Even-Odd de-
composition of the forward and the inverse transform. This com-
monality is exploited to reduce the hardware area.
Let be the input and

be the output of the 4-point 1D forward
transform. The 4-point 1D forward transform is given by the
following equation:

(32)

Even-odd decomposition of the 4-point forward transform is
given by (33) to (35):

Add/sub:

(33)

Even part:

(34)

Odd part:

(35)

Or equivalent odd part:

(36)

Fig. 10 shows the architecture of the 4-point 1D forward
transform implementation.
For a unified forward-inverse transform implementation, ad-

ditional symmetry between the forward and the inverse trans-
form matrices can be exploited to further reduce area. Com-
paring (18) and (34), it can be observed that the even matrices
of the forward and the inverse transform are identical. Com-
paring (20) and (36), it can be observed that the odd matrices
of the forward and the inverse transform are also identical. So
a unified 4-point transform circuit can share hardware for even

Fig. 11. Unified forward-inverse 4-point transform architecture.

TABLE VI
HEVC 32-POINT 1D TRANSFORM AREA ESTIMATE.

matrix and the odd matrix multiplication. The commonality be-
tween the 4-point forward and inverse transforms can also be
observed by comparing Figs. 7 and 10. Fig. 11 shows the archi-
tecture of a unified forward-inverse 4-point transform with even
and oddmatrix sharing (labeled as Even4 and Odd4 respectively
in the figure). The add-sub network on the left is used for the for-
ward transformwhereas the add-sub network on the right is used
for the inverse transform. The add-sub networks are labeled as
AddSub4 in Fig. 11. A control signal () selects
whether the circuit behaves as a forward or as an inverse trans-
form. When the inverse transform is desired, the mux/demuxes
are switched down and for the forward transform, the mux/de-
muxes are switched up.
The 8-point, 16-point and 32-point unified transform archi-

tectures are similar to Fig. 11. More details can be found in [19].
Note that the final results of both the forward and the inverse

transform are rounded before being stored. This is not explicitly
shown in the figures but is included in the hardware results.
The rounding circuit is also shared between forward and inverse
transform.
The unified forward-inverse transform was implemented

in RTL for a throughput of one 32-point 1D transform per
cycle. Separate forward (and inverse) transforms were also
implemented. The implementations were synthesized in 45-nm
library. Table VI lists the area estimates (in kGates) at 250 MHz
for separate and unified implementations. The unified im-
plementation requires around 44% less area than a separate
implementation. Hardware area savings at other frequencies
are provided in [22] and are in range of 43–45%.

IV. CODING PERFORMANCE OF HEVC TRANSFORMS

The different transform sizes used in a coding block in HEVC
are signaled in a quadtree structure [23]. The maximum trans-

1040 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 7, NO. 6, DECEMBER 2013

TABLE VII
BD-RATE SAVINGS OF USING LARGER TRANSFORM SIZES (16 16 AND
32 32) ON TOP OF THE SMALLER TRANSFORM SIZES (4 4 AND 8 8).

TABLE VIII
BD-RATE SAVINGS OF THE HEVC 4 4 AND 8 8 TRANSFORMS

VERSUS THE H.264/AVC 4 4 AND 8 8 TRANSFORMS.

form size to use in a coding block is signaled in the sequence
parameter set. Table VII compares the coding performance of
HEVC when all transform sizes (up to 32 32) are used to the
coding performance when only 4 4 and 8 8 transforms are
used as in H.264/AVC. The standard Bjøntegaard Delta-Rate
(BD-Rate) metric [24] is used for comparison. Table VII shows
that there is a bit rate savings in the range of 5.6% to 6.8% on
average because of the introduction of larger transform sizes
(16 16 and 32 32) in HEVC. The bit rate savings are higher
at larger resolution video such as 4 K (2560 1600) and 1080 p
(1920 1080). The HEVC test model, HM-9.0.1 [25] was used
for the simulations and the video sequences and coding condi-
tions used were as described in [26].
Table VIII compares the coding performance of the HEVC

4 4 and 8 8 transforms to that of the corresponding
H.264/AVC transforms. The H.264/AVC 4 4 and 8 8 trans-
forms were converted to 8-bit precision and implemented in the
HM-9.0.1 test model. Only the 4 4 and 8 8 transform sizes
were enabled in the simulations. It can be seen from Table VIII
that the HEVC 4 4 and 8 8 transforms perform better than
the corresponding H.264/AVC transforms in terms of coding
performance.

V. CONCLUSION

The core transform design for HEVC has been described in
detail. Closeness to the DCT for finite precision approximation
has been discussed as a trade-off between various measures.
Implementation friendliness has been achieved by preserving
symmetry properties, an embedded structure and careful limi-
tations of the required bit depths. Finally, the implementation
complexity has been discussed in terms of arithmetic operation
count and hardware implementation analysis. Coding perfor-
mance results show that larger transform sizes in HEVC pro-
vide significant bit rate savings especially at higher video res-
olutions and that the smaller transforms (4 4 and 8 8) are
better than the corresponding H.264/AVC transforms in terms
of coding performance.

REFERENCES

[1] “ITU-T Rec. H.265 and ISO/IEC 23008-2: High efficiency video
coding,” ITU-T and ISO/IEC, 2013.

[2] A. Saxena and F. Fernandes, “JCTVC-E125: CE7: Mode-dependent
DCT/DST without full matrix multiplication for intra prediction,”
Joint Collaborative Team on Video Coding (JCT-VC), 2011.

[3] “ITU-T Rec. H.264 and ISO/IEC 14496-10:2009: Advanced video
coding,” ITU-T and ISO/IEC, 2010.

[4] H. S. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky, “Low-
complexity transform and quantization in H.264/AVC,” IEEE Trans.
Circuits Syst. Video Technol., vol. 13, no. 7, pp. 598–603, Jul. 2003.

[5] W.-H. Chen, C. H. Smith, and S. Fralick, “A fast computational algo-
rithm for the discrete cosine transform,” IEEE Trans. Commun., vol.
COM-25, no. 9, pp. 1004–1009, Sep. 1977.

[6] T. Wiegand, W.-J. Han, J.-R. Ohm, and G. J. Sullivan, “JCTVC-C403:
High efficiency video coding (HEVC) text specification working draft
1,” Joint Collaborative Team on Video Coding (JCT-VC), 2010.

[7] M. Sadafale and M. Budagavi, “JCTVC-C226: Low-complexity con-
figurable transform architecture for HEVC,” Joint Collaborative Team
on Video Coding (JCT-VC), 2010.

[8] M. Zhou and V. Sze, “JCTVC-C056: TE 12: Evaluation of transform
unit (TU) size,” Joint Collaborative Team on Video Coding (JCT-VC),
2010.

[9] A. Fuldseth, G. Bjøntegaard, M. Sadafale, and M. Budagavi, “JCTVC-
G495: Core transform design for HEVC,” Joint Collaborative Team on
Video Coding (JCT-VC), 2011.

[10] W. Dai, M. Krishnan, J. Topiwala, P. Topiwala, and E. Alshina,
“JCTVC-G266: Lossless core transforms for HEVC,” Joint Collabo-
rative Team on Video Coding (JCT-VC), 2011.

[11] R. Joshi, J. Sole, and M. Karczewicz, “JCTVC-G579: Scaled integer
transform supporting recursive factorization structure,” Joint Collabo-
rative Team on Video Coding (JCT-VC), 2011.

[12] E. Alshina, A. Alshin, W. Lee, and J. Park, “JCTVC-G737: Full factor-
ization core transforms for HEVC,” Joint Collaborative Team on Video
Coding (JCT-VC), 2011.

[13] M. Tikekar, C.-T. Huang, C. Juvekar, and A. Chandrakasan, “JCTVC-
G265: Core transform property for practical throughput hardware de-
sign,” Joint Collaborative Team on Video Coding (JCT-VC), 2011.

[14] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview
of the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst.
Video Technol., vol. 13, no. 7, pp. 560–570, Jul. 2003.

[15] C.-Y. Hung and P. Landman, “Compact inverse discrete cosine trans-
form circuit for MPEG video decoding,” in Proc. IEEE SIPS, Nov.
1997, pp. 364–373.

[16] M. Budagavi, “JCTVC-E386: IDCT pruning,” Joint Collaborative
Team on Video Coding (JCT-VC), 2011.

[17] F. Bossen, “JCTVC-G757: On software complexity,” Joint Collabora-
tive Team on Video Coding (JCT-VC), 2011.

[18] A. Fuldseth, L. P. Endresen, S. Selnes, V. Arbatov, F. Franchetti, and
M. Puschel, “JCTVC-G497: SIMD Optimization of proposed HEVC
transforms,” Joint Collaborative Team on Video Coding (JCT-VC),
2011.

[19] M. Budagavi and V. Sze, “Unified forward + inverse architecture
for HEVC,” in Proc. IEEE Int. Conf. Image Process., Sep. 2012, pp.
209–212.

[20] Y. Li, Y. He, and S. Mei, “A highly parallel joint VLSI architecture for
transforms in H.264/AVC,” J. Signal Process. Syst., vol. 50, no. 1, pp.
19–32, Jan. 2008.

[21] W. Hwangbo and C.-M. Kyung, “A multitransform architecture for
H.264/AVC high-profile coders,” IEEE Trans. Multimedia, vol. 12, no.
3, pp. 157–167, Apr. 2010.

[22] M. Budagavi, V. Sze, and M. Sadafale, “JCTVC-G132: hardware anal-
ysis of transform and quantization,” Joint Collaborative Team on Video
Coding (JCT-VC), 2011.

[23] M. Winken, P. Helle, D. Marpe, H. Schwarz, and T. Wiegand, “Trans-
form coding in the HEVC test model,” in Proc. IEEE Int. Conf. Image
Process., 2011, pp. 3693–3696.

[24] G. Bjøntegaard, “VCEG-M33: Calculation of average PSNR differ-
ences between RD curves,” ITU-T Video Coding Experts Group, 2001.

[25] HEVC Test Model HM-9.0.1 Nov. 2012 [Online]. Available: https://
hevc.hhi.fraunhofer.de/svn/ svn_HEVCSoftware/tags/HM-9.0.1/

[26] F. Bossen, “JCTVC-K1100: CommonHM test conditions and software
reference configurations,” Joint Collaborative Team on Video Coding
(JCT-VC), 2012.

BUDAGAVI et al.: CORE TRANSFORM DESIGN IN THE HEVC STANDARD 1041

Madhukar Budagavi received the B.E. degree (first
class with distinction) in electronics and communica-
tions engineering from the National Institute of Tech-
nology, Trichy, India, in 1991, the M.Sc.(Eng.) de-
gree in electrical engineering from the Indian Insti-
tute of Science, Bangalore, in 1994, and the Ph.D.
degree in electrical engineering from Texas A & M
University, College Station, in 1998.
From 1993 to 1995, he was with Motorola India

Electronics, Ltd., developing DSP software and algo-
rithms for Motorola DSP chips. Since 1998, he has

been with the Texas Instruments (TI) Embedded Processing Systems R & D
Center doing video coding, 3D graphics, and image processing research, de-
sign and implementation. From 2003 to 2007, he was also an Adjunct Assistant
Professor in Southern Methodist University teaching courses in DSP and image
processing to undergraduate and graduate students.
He has published over 35 journal and conference papers (including 7 book

chapters) in the field of video coding, multimedia communications, DSP pro-
gramming, speech coding and biomedical data compression. He has been repre-
senting TI in ITU and ISO international video coding standardization activity.
His most recent participation has been in the next generation video coding stan-
dard HEVC being standardized by JCTVC committee of ITU and ISO. Within
the committee he has helped coordinate core experiments and AhG activity on
spatial transforms, quantization, entropy coding, in-loop filter, intra prediction,
screen content coding and scalable HEVC (SHVC). He is a Senior Member of
IEEE.

Arild Fuldseth received his B.Sc. degree from the
Norwegian Institute of Technology in 1988, his
M.Sc. degree from North Carolina State University
in 1989, and his Ph.D. degree from Norwegian
University of Science and Technology in 1997, all
degrees in Signal Processing.
From 1989 to 1994, he was a Research Scientist

in SINTEF, Trondheim, Norway. From 1997 to 2002
he was a Manager of the signal processing group of
Fast Search and Transfer, Oslo, Norway. Since 2002
he has been with Tandberg Telecom, Oslo, Norway

(now part of Cisco Systems) where he is currently a Principal Engineer working
with video compression technology.

Gisle Bjøntegaard received the Dr. Philos degree in
physics from University of Oslo, Norway in 1974.
From 1974 to 1996 he worked as senior scientist

with Telenor Research and Development in Oslo,
Norway. The areas of work included: radio link
network design, reflector antenna design and con-
struction, and digital signal procession. The main
area of work from 1980 was development of digital
video compression methods. He contributed actively
in development of the ITU video standards H.261,
H.262, H,263, H.264 as well as ISO/IEC MPEG2

and MPEG4. From 1996 to 2002 he worked as a group manager at Telenor
Broadband Services in Oslo, Norway. Work areas included design of point
to point satellite communication and development of digital satellite TV
platform. He produced numerous contributions towards the development of
the ITU-T standards H.263 and H.264. From 2002 he worked as principal
scientist at Tandberg Telecom in Lysaker, Norway working with video coding
development and implementation. Since 2006 he has worked on further im-
provement of digital video coding and is at present taking part in the definition
of HEVC developed jointly between ITU and ISO. In 2010 Tandberg Telecom
was acquired by Cisco Systems and he was promoted to Cisco Fellow and is
presently working with Cisco Systems Norway.

Vivienne Sze received the B.A.Sc. (Hons) degree
in electrical engineering from the University of
Toronto, Toronto, ON, Canada, in 2004, and the
S.M. and Ph.D. degree in electrical engineering from
the Massachusetts Institute of Technology (MIT),
Cambridge, MA, in 2006 and 2010 respectively.
She received the Jin-Au Kong Outstanding Doctoral
Thesis Prize, awarded for the best PhD thesis in
electrical engineering in 2011.
Since September 2010, she has been a Member of

Technical Staff in the Embedded Processing Systems
R & D Center at Texas Instruments (TI), Dallas, TX, where she designs low-
power algorithms and architectures for video coding. She also represents TI
at the international JCT-VC standardization body developing HEVC, the next
generation video coding standard. Within the committee, she is the primary co-
ordinator of the core experiment on coefficient scanning and coding.
She was a recipient of the 2007 DAC/ISSCC Student Design Contest

Award and a co-recipient of the 2008 A-SSCC Outstanding Design Award.
She received the Natural Sciences and Engineering Research Council of
Canada (NSERC) Julie Payette fellowship in 2004, the NSERC Postgraduate
Scholarships in 2005 and 2007, and the Texas Instruments Graduate Woman’s
Fellowship for Leadership in Microelectronics in 2008.

Mangesh Sadafale received BE degree in elec-
tronics engineering from Nagpur University, Nagpur,
India in 1998 and ME degree in microelectronics
from BITS, Pilani, India in 2000.
From 2000 to 2011, he worked at different groups

in Texas Instruments, India where he designed and
developed synthesizable (soft) c64x+ datapath and
different signal processing hardware accelerators for
DSL and video. He also represented TI at the inter-
national JCT-VC standardization body developing
HEVC. In 2011 he was co-founder at Signalchip

Innovations, India.

