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ABSTRACT 

The upcoming HEVC video coding standard supports many 
transform sizes ranging from 4-point to 32-point in square and 
rectangular form. Multiple transform sizes improve coding 
efficiency, but also increase the implementation complexity. 
Furthermore both forward and inverse transforms need to be 
supported in various consumer devices. This paper presents a 
unified forward+inverse transform architecture for HEVC. The 
unified architecture makes use of symmetry properties that exist in 
the HEVC forward and inverse transform matrices to achieve 
hardware sharing across different transform sizes and also between 
forward and inverse transforms. It uses 43-45% less area than 
separate forward and inverse core transform implementations. 

Index Terms— Video coding, HEVC, core transform, 
hardware architecture.

1. INTRODUCTION 

The Joint Collaborative Team on Video Coding (JCT-VC) is 
currently developing the next-generation video coding standard 
referred to as High Efficiency Video Coding (HEVC).  HEVC is 
expected to provide around 50% reduction in bitrate (at similar 
visual quality) over the current standard, H.264/AVC, and 
intended for larger resolutions and higher frame rates.  To address 
these requirements, HEVC utilizes larger block sizes than 
H.264/AVC.  In HEVC, the largest coding unit (LCU) can be up to 
64x64 in size and transform sizes of 4x4, 8x8, 16x16, 32x32, 
16x4, 4x16, 32x8, 8x32 are supported. Multiple transform sizes 
improve compression performance, but also increase the 
implementation complexity. 

With the proliferation of products such as camera phones, tablets, 
video-conferencing, set-top boxes with digital video recording 
feature, etc., it is necessary to support video capture in addition to 
video playback on the same device. As a result both forward and 
inverse transforms need to be implemented in the same device and 
techniques that can reduce the overall area of the hardware block 
that implements both forward+inverse transform are desirable.  

HEVC supports a core transform [1] and an alternate transform 
used only for Intra 4x4 blocks [2]. The focus of this paper is on 
core transform implementation. The core transform is a DCT-like 
integer transform that can be represented by matrix multiplication. 
Unlike the H.264/AVC transform [3], the HEVC core transform 
has decoupled transform and quantization [4]. 

This paper highlights the symmetry properties of the core 
transform in HEVC [1] that can be used to reduce overall area of 

the forward+inverse transform block. Hardware results are 
presented to demonstrate area savings achieved by using these 
symmetry properties.  

2. SYMMETRY WITHIN AND BETWEEN FORWARD AND 
INVERSE TRANSFORMS 

HEVC MxN core transforms are  implemented as M-point (M-pt) 
1D transforms followed by N-pt 1D transforms. Both square and 
rectangular transforms can share the same 1D transform hardware. 
Hence 1D transforms are discussed in this paper. The 32-pt HEVC 
core transform matrix is defined by 31 8-bit constants (ignoring 
sign bits) [5] – C1, C2, ..., C31 – given by: 

4. C31

9,   C30 13,  C29 18,  C28 22,  C27 25,  C26

31,  C25 36,  C24 38,  C23 43,  C22 46,  C21

50,  C20 54,  C19 57,  C18 61,  C17 64,  C16

67,  C15 70,  C14 73,  C13 75,  C12 78,  C11

80,  C10 82,  C9  83,  C8  85,  C7  87,  C6 

88,  C5  89,  C4  90,  C3  90,  C2  90,  C1 

=
=====
=====
=====
=====
=====
=====

The HEVC core transform has several useful symmetry properties 
that can be used to reduce implementation cost. These properties 
also exist for DCT: 

1. Even-odd symmetry in transform matrix that can be 
utilized to reduce implementation complexity [6].  

2. The 16-pt, 8-pt, 4-pt transform matrices are subsets of 
the 32-pt transform matrix. As a result of this symmetry, 
smaller sized transforms are embedded within larger size 
transforms and do not need separate implementation.  

3. Symmetry between forward and inverse transform.  
Property 1 has been well studied for implementing 8x8 IDCT in 
early video coding standards where as Properties 2 and 3 have now 
become important for practical applications because of the multiple 
transform sizes in HEVC and the need to support forward+inverse 
transform in same hardware block respectively. Use of all these 
three properties for a unified forward+transform implementation 
will be described in this section using 4-pt and 8-pt forward and 
inverse transform as examples. Similar symmetry property can be 
found in 16-pt and 32-pt transforms.  

2.1. 4-pt Core transform 

Let TMMMMM ]3,2,1,0[=  be the input vector and 
TPPPPP ]3,2,1,0[=  denote the output of the forward 4-pt 

transform. The forward 4-pt transform is defined by following 
equation: PDM 4=  where 

4D  is given by 
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=

C24- C8   C8-  C24

C16  C16- C16- C16

C8-  C24- C24  C8 

C16  C16  C16  C16

4D
                      (Eq. 1) 

Even-Odd decomposition (also referred to as partial butterfly 
during HEVC development) of N-pt transform of an N-pt input 
consists of following three steps:  

1. Add/subtract input to generate N-pt intermediate vector. 
(See Eq. 2). 

2. Calculate even part of the output using N/2×N/2 subset 
of transform matrix obtained from even rows of 
transform matrix. (See Eq. 3). 

3. Calculate odd part of the output using  N/2×N/2  subset 
of transform matrix obtained from odd rows of transform 
matrix. (See Eq. 4). 

Even-odd decomposition of forward 4-pt transform is given by 
(Eq. 2)-(Eq. 4): 
Add/sub: 
[ ] [ ] TT MMMMMMMMKKKK 03,12,21,303,2,1,0 −−++=

                                                                            (Eq. 2) 
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                             (Eq. 4) 
Or equivalent odd-part: 
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                             (Eq. 5) 
Direct 4-pt transform using (Eq. 1) would require 16 
multiplications. Even-odd decomposition on the other hand 
requires 8 multiplications. Figure 1(a) shows the architecture of 
forward 4-pt implementation using even-odd decomposition. 

Inverse 4-pt transform is defined by following equation:  

XDY T
4=                                                        (Eq. 6) 

where TXXXXX ]3,2,1,0[=  is the input vector and 
TYYYYY ]3,2,1,0[=  is the output of 4-pt inverse transform. 

Even-odd decomposition of inverse 4-pt transform is given by (Eq. 
7) – (Eq. 9): 
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                            (Eq. 7) 
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                           (Eq. 8) 
Add/sub: 
[ ] [ ] TT ZZZZZZZZYYYY 30,21,21,303,2,1,0 ++−−=   (Eq. 9) 

      
Figure 1(b) shows the architecture of inverse 4-pt implementation 
using even-odd decomposition. Assuming 16-bit inputs, inverse 

transform uses 16-bit x 8-bit multipliers where as the forward 
transform uses 17-bit x 8-bit multipliers since the inputs get added 
first before multiplication in forward transform. 

For a unified forward+transform implementation, additional 
symmetry between forward and inverse transform matrices can be 
exploited to further reduce area. Comparing (Eq. 3) and (Eq. 7), it 
can be observed that the even matrix of forward and inverse 
transform is identical.  Comparing (Eq. 5) and (Eq. 8), it can be 
observed that the odd matrix of forward and inverse transform is 
identical. So a unified 4-pt hardware that implements both forward 
and inverse transform can share hardware block that implements 
even matrix (Eq. 3 and Eq. 7) and odd matrix (Eq. 5 and Eq. 8). 
Figure 2 shows the architecture of a unified forward+inverse 4-pt 
transform with even and odd matrix sharing (labeled as Even4 and 
Odd4 respectively in the figure). The add-sub network on left is 
used for forward transform (see also Eq. 2) where as the add-sub 
network on right is used for inverse transform (see also Eq. 9). The 
add-sub networks are labeled as AddSub4 in Figure 2. A control 
signal (inv_fwd_flag) selects whether the circuit behaves as a 
forward or an inverse transform. The unified architecture uses 17-
bit x 8-bit multipliers.  

2.2. 8-pt Core transform 

Forward 8-pt transform is defined by following 
equation: MDP 8= , where TMMM ]7,,0[=  is input and 

TPPP ]7,,0[=  is output, and 8D  is given by: 

=

C28- C20  C12- C4   C4-  C12  C20- C28

C24  C8-  C8   C24- C24- C8   C8-  C24

C20- C4   C28- C12- C12  C28  C4-  C20

C16  C16- C16- C16  C16  C16- C16- C16
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C4-  C12- C20- C28- C28  C20  C12  C4 

C16  C16  C16  C16  C16  C16  C16  C16

8D

   (Eq.10)  

      
Even-odd decomposition is given by (Eq. 11) – (Eq. 13) 

Add/sub: 
[ ] TT MMMMMMMMKKKK ]43,52,61,70[3,2,1,0 ++++=
[ ] TT MMMMMMMMKKKK ]07,16,25,34[7,6,5,4 −−−−=
                                                                                           (Eq. 11) 
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                 (Eq. 13) 
Inverse 8-pt transform is defined by following equation where 

TXXX ]7,,0[=  is input and TYYY ]7,,0[=  is output: 

      XDY T
8=                                                             (Eq. 14) 
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Even-odd decomposition is given by (Eq. 15) – (Eq. 17): 
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              (Eq. 16) 
Add/sub: 
[ ] TT ZZZZZZZZYYYY ]43,52,61,70[3,2,1,0 −−−−=
[ ] TT ZZZZZZZZYYYY ]70,61,52,43[7,6,5,4 ++++=
                                                                                        (Eq. 17) 

Comparing (Eq. 12) to (Eq. 1) and (Eq. 15) to (Eq. 6), it can be 
observed that the even matrix of 8-pt forward and inverse 
transform are identical to 4-pt forward and inverse transform 
matrix. Hence the unified architecture described in Section 2.1 can 
be used to implement the even part of both 8-pt forward and 
inverse transform. 

Comparing (Eq. 13) and (Eq. 16), it can be seen that the odd 
matrix of forward and inverse 8-pt transform have identical 
multiplicands which differ in sign for half the elements shown by 
the circled elements in (Eq. 16). 

Figure 3 shows the architecture of unified forward+inverse 
transform for 8-pt transform. The architecture is similar to that 
used for 4-pt transform. The even and odd matrix multiplications 
are shared between forward and inverse transform. Add-sub 
network on left is used for forward transform whereas add-sub 
network on right is used for inverse transform. Constant “s” in the 
odd-matrix is equal to 1 for inverse transform and equal to -1 for 
forward transform. The sum-of-product terms involving 
coefficients with and without “s” are calculated separately and the 
sign is changed in the final sum of product terms. The 16-pt and 
32-pt unified transform architectures are similar to Figure 3.  

Note that the final results of both forward and inverse transform 
are rounded before being stored. This is not explicitly shown in the 
figures but are included in hardware results in Section 3. The 
rounding circuit is also shared between forward and inverse 
transform. 

3. HARDWARE RESULTS

The unified forward+inverse transform was implemented in RTL 
for a throughput of one 32-pt 1D transform per cycle. A 32x32 2D 
transform requires 64 cycles. Separate forward and inverse 
transforms were also implemented. The implementations were 
synthesized in 45-nm CMOS. Table 1 lists the area estimates (in 
kgates) at 250 MHz for separate and unified implementations. The 
unified implementation requires around 44% less area than 
separate implementation. Hardware area savings at other 
frequencies are provided in [7] and are in range of 43-45%. 
   

Table 1: HEVC 32-pt 1D transform area estimate  

Freq Fwd Inv 
Separate 
Fwd+Inv 

Unified 
Fwd+Inv 

%Area 
savings 

250 148 130 278 156 44% 

Table 2 provides the area breakdown of different components of 
32-pt transform. N-pt transform implementation consists of three 
main components: N/2-pt transform, Odd matrix multiplication 
circuit and add-sub network. Hence smaller size transforms do not 
need separate implementation leading to area savings. 

Table 2: Area breakdown of different components in 
32-pt transform 
  % Area 

Even4  0.2 
Odd4  1.0 

4-pt 
AddSub
4  0.8 

Odd8  5.7 

8-pt 

AddSub8  1.8 
Odd16  16.9 

16-pt 

AddSub16  3.2 
Odd32  54.0 

32-pt 

AddSub32  6.1 
Mux, Demux, Rounding  10.3 
Total 100 

4. SUMMARY 

HEVC uses multiple transform sizes to improve coding efficiency. 
This however increases complexity. In this paper, it was shown 
that symmetry properties of HEVC core transform enable hardware 
sharing across different transform sizes and also between forward 
and inverse transforms.   Table 3 summarizes the hardware sharing 
between forward and inverse transform that enabled an area 
reduction of over 40%. 

Table 3: Hardware sharing between forward and inverse 
transform in HEVC 
 Shared Not-shared 
4-pt Even4 matrix mult (Eq. 3 & 7) 

Odd4 Matrix mult (Eq. 5 & 8) 
AddSub4 networks 
(Eq. 2 & 9) 

8-pt 4-pt matrix mult (Eq. 12 & 15) 
Odd8 Matrix mult (Eq. 13 & 16) 

AddSub8 networks 
(Eq. 11 & 17) 

16-pt 
32-pt 

Even  and odd (Odd16, Odd32) 
matrix mult 

AddSub16,32 
network 
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Figure 1: (a) Forward transform architecture for 4-pt transform. (b) Inverse transform architecture for 4-pt transform.
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Figure 2: Unified forward+inverse 4-pt transform with single set of input and output ports.
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Figure 3: Unified forward+inverse 8-pt transform architecture.
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