
UNIFIED FORWARD+INVERSE TRANSFORM ARCHITECTURE FOR HEVC

Madhukar Budagavi, Vivienne Sze

Multimedia Lab, Systems and Applications R&D Center, Texas Instruments
madhukar@ti.com, sze@ti.com

ABSTRACT

The upcoming HEVC video coding standard supports many
transform sizes ranging from 4-point to 32-point in square and
rectangular form. Multiple transform sizes improve coding
efficiency, but also increase the implementation complexity.
Furthermore both forward and inverse transforms need to be
supported in various consumer devices. This paper presents a
unified forward+inverse transform architecture for HEVC. The
unified architecture makes use of symmetry properties that exist in
the HEVC forward and inverse transform matrices to achieve
hardware sharing across different transform sizes and also between
forward and inverse transforms. It uses 43-45% less area than
separate forward and inverse core transform implementations.

Index Terms— Video coding, HEVC, core transform,
hardware architecture.

1. INTRODUCTION

The Joint Collaborative Team on Video Coding (JCT-VC) is
currently developing the next-generation video coding standard
referred to as High Efficiency Video Coding (HEVC). HEVC is
expected to provide around 50% reduction in bitrate (at similar
visual quality) over the current standard, H.264/AVC, and
intended for larger resolutions and higher frame rates. To address
these requirements, HEVC utilizes larger block sizes than
H.264/AVC. In HEVC, the largest coding unit (LCU) can be up to
64x64 in size and transform sizes of 4x4, 8x8, 16x16, 32x32,
16x4, 4x16, 32x8, 8x32 are supported. Multiple transform sizes
improve compression performance, but also increase the
implementation complexity.

With the proliferation of products such as camera phones, tablets,
video-conferencing, set-top boxes with digital video recording
feature, etc., it is necessary to support video capture in addition to
video playback on the same device. As a result both forward and
inverse transforms need to be implemented in the same device and
techniques that can reduce the overall area of the hardware block
that implements both forward+inverse transform are desirable.

HEVC supports a core transform [1] and an alternate transform
used only for Intra 4x4 blocks [2]. The focus of this paper is on
core transform implementation. The core transform is a DCT-like
integer transform that can be represented by matrix multiplication.
Unlike the H.264/AVC transform [3], the HEVC core transform
has decoupled transform and quantization [4].

This paper highlights the symmetry properties of the core
transform in HEVC [1] that can be used to reduce overall area of

the forward+inverse transform block. Hardware results are
presented to demonstrate area savings achieved by using these
symmetry properties.

2. SYMMETRY WITHIN AND BETWEEN FORWARD AND
INVERSE TRANSFORMS

HEVC MxN core transforms are implemented as M-point (M-pt)
1D transforms followed by N-pt 1D transforms. Both square and
rectangular transforms can share the same 1D transform hardware.
Hence 1D transforms are discussed in this paper. The 32-pt HEVC
core transform matrix is defined by 31 8-bit constants (ignoring
sign bits) [5] – C1, C2, ..., C31 – given by:

4. C31

9, C30 13, C29 18, C28 22, C27 25, C26

31, C25 36, C24 38, C23 43, C22 46, C21

50, C20 54, C19 57, C18 61, C17 64, C16

67, C15 70, C14 73, C13 75, C12 78, C11

80, C10 82, C9 83, C8 85, C7 87, C6

88, C5 89, C4 90, C3 90, C2 90, C1

=
=====
=====
=====
=====
=====
=====

The HEVC core transform has several useful symmetry properties
that can be used to reduce implementation cost. These properties
also exist for DCT:

1. Even-odd symmetry in transform matrix that can be
utilized to reduce implementation complexity [6].

2. The 16-pt, 8-pt, 4-pt transform matrices are subsets of
the 32-pt transform matrix. As a result of this symmetry,
smaller sized transforms are embedded within larger size
transforms and do not need separate implementation.

3. Symmetry between forward and inverse transform.
Property 1 has been well studied for implementing 8x8 IDCT in
early video coding standards where as Properties 2 and 3 have now
become important for practical applications because of the multiple
transform sizes in HEVC and the need to support forward+inverse
transform in same hardware block respectively. Use of all these
three properties for a unified forward+transform implementation
will be described in this section using 4-pt and 8-pt forward and
inverse transform as examples. Similar symmetry property can be
found in 16-pt and 32-pt transforms.

2.1. 4-pt Core transform

Let TMMMMM]3,2,1,0[= be the input vector and
TPPPPP]3,2,1,0[= denote the output of the forward 4-pt

transform. The forward 4-pt transform is defined by following
equation: PDM 4= where

4D is given by

209978-1-4673-2533-2/12/$26.00 ©2012 IEEE ICIP 2012

=

C24- C8 C8- C24

C16 C16- C16- C16

C8- C24- C24 C8

C16 C16 C16 C16

4D
 (Eq. 1)

Even-Odd decomposition (also referred to as partial butterfly
during HEVC development) of N-pt transform of an N-pt input
consists of following three steps:

1. Add/subtract input to generate N-pt intermediate vector.
(See Eq. 2).

2. Calculate even part of the output using N/2×N/2 subset
of transform matrix obtained from even rows of
transform matrix. (See Eq. 3).

3. Calculate odd part of the output using N/2×N/2 subset
of transform matrix obtained from odd rows of transform
matrix. (See Eq. 4).

Even-odd decomposition of forward 4-pt transform is given by
(Eq. 2)-(Eq. 4):
Add/sub:
[] [] TT MMMMMMMMKKKK 03,12,21,303,2,1,0 −−++=

 (Eq. 2)
Even part:

=
1

0

2

0

K

K

P

P

C16- C16

C16 C16

 (Eq. 3)
Odd part:

=
3

2

3

1

K

K

P

P

C24- C8

C8- C24-

 (Eq. 4)
Or equivalent odd-part:

=
2

3

1

3

K

K

P

P

C24 C8-

C8 C24-

 (Eq. 5)
Direct 4-pt transform using (Eq. 1) would require 16
multiplications. Even-odd decomposition on the other hand
requires 8 multiplications. Figure 1(a) shows the architecture of
forward 4-pt implementation using even-odd decomposition.

Inverse 4-pt transform is defined by following equation:

XDY T
4= (Eq. 6)

where TXXXXX]3,2,1,0[= is the input vector and
TYYYYY]3,2,1,0[= is the output of 4-pt inverse transform.

Even-odd decomposition of inverse 4-pt transform is given by (Eq.
7) – (Eq. 9):
Even part:

=
2

0

1

0

X

X

Z

Z

C16- C16

C16 C16

 (Eq. 7)
Odd part:

=
3

1

3

2

X

X

Z

Z

C24- C8-

C8 C24-

 (Eq. 8)
Add/sub:
[] [] TT ZZZZZZZZYYYY 30,21,21,303,2,1,0 ++−−= (Eq. 9)

Figure 1(b) shows the architecture of inverse 4-pt implementation
using even-odd decomposition. Assuming 16-bit inputs, inverse

transform uses 16-bit x 8-bit multipliers where as the forward
transform uses 17-bit x 8-bit multipliers since the inputs get added
first before multiplication in forward transform.

For a unified forward+transform implementation, additional
symmetry between forward and inverse transform matrices can be
exploited to further reduce area. Comparing (Eq. 3) and (Eq. 7), it
can be observed that the even matrix of forward and inverse
transform is identical. Comparing (Eq. 5) and (Eq. 8), it can be
observed that the odd matrix of forward and inverse transform is
identical. So a unified 4-pt hardware that implements both forward
and inverse transform can share hardware block that implements
even matrix (Eq. 3 and Eq. 7) and odd matrix (Eq. 5 and Eq. 8).
Figure 2 shows the architecture of a unified forward+inverse 4-pt
transform with even and odd matrix sharing (labeled as Even4 and
Odd4 respectively in the figure). The add-sub network on left is
used for forward transform (see also Eq. 2) where as the add-sub
network on right is used for inverse transform (see also Eq. 9). The
add-sub networks are labeled as AddSub4 in Figure 2. A control
signal (inv_fwd_flag) selects whether the circuit behaves as a
forward or an inverse transform. The unified architecture uses 17-
bit x 8-bit multipliers.

2.2. 8-pt Core transform

Forward 8-pt transform is defined by following
equation: MDP 8= , where TMMM]7,,0[= is input and

TPPP]7,,0[= is output, and 8D is given by:

=

C28- C20 C12- C4 C4- C12 C20- C28

C24 C8- C8 C24- C24- C8 C8- C24

C20- C4 C28- C12- C12 C28 C4- C20

C16 C16- C16- C16 C16 C16- C16- C16

C12- C28 C4 C20 C20- C4- C28- C12

C8 C24 C24- C8- C8- C24- C24 C8

C4- C12- C20- C28- C28 C20 C12 C4

C16 C16 C16 C16 C16 C16 C16 C16

8D

 (Eq.10)

Even-odd decomposition is given by (Eq. 11) – (Eq. 13)

Add/sub:
[] TT MMMMMMMMKKKK]43,52,61,70[3,2,1,0 ++++=
[] TT MMMMMMMMKKKK]07,16,25,34[7,6,5,4 −−−−=
 (Eq. 11)
Even part:

=

3

2

1

0

6

4

2

0

K

K

K

K

P

P

P

P

C24- C8 C8- C24

C16 C16- C16- C16

C8- C24- C24 C8

C16 C16 C16 C16

 (Eq. 12)
Odd part:

=

7

6

5

4

7

5

3

1

K

K

K

K

P

P

P

P

C28- C20 C12- C4

C20- C4 C28- C12-

C12- C28 C4 C20

C4- C12- C20- C28-

 (Eq. 13)
Inverse 8-pt transform is defined by following equation where

TXXX]7,,0[= is input and TYYY]7,,0[= is output:

 XDY T
8= (Eq. 14)

210

Even-odd decomposition is given by (Eq. 15) – (Eq. 17):
Even part:

=

6

4

2

0

3

2

1

0

X

X

X

X

Z

Z

Z

Z

C24- C16 C8- C16

C8 C16- C24- C16

C8- C16- C24 C16

C24 C16 C8 C16

 (Eq. 15)
Odd part:

=

7

5

3

1

7

6

5

4

X

X

X

X

Z

Z

Z

Z

C28- C20- C12- C4-

C20 C4 C28 C12-

C12- C28- C4 C20-

C4 C12- C20 C28-

 (Eq. 16)
Add/sub:
[] TT ZZZZZZZZYYYY]43,52,61,70[3,2,1,0 −−−−=
[] TT ZZZZZZZZYYYY]70,61,52,43[7,6,5,4 ++++=
 (Eq. 17)

Comparing (Eq. 12) to (Eq. 1) and (Eq. 15) to (Eq. 6), it can be
observed that the even matrix of 8-pt forward and inverse
transform are identical to 4-pt forward and inverse transform
matrix. Hence the unified architecture described in Section 2.1 can
be used to implement the even part of both 8-pt forward and
inverse transform.

Comparing (Eq. 13) and (Eq. 16), it can be seen that the odd
matrix of forward and inverse 8-pt transform have identical
multiplicands which differ in sign for half the elements shown by
the circled elements in (Eq. 16).

Figure 3 shows the architecture of unified forward+inverse
transform for 8-pt transform. The architecture is similar to that
used for 4-pt transform. The even and odd matrix multiplications
are shared between forward and inverse transform. Add-sub
network on left is used for forward transform whereas add-sub
network on right is used for inverse transform. Constant “s” in the
odd-matrix is equal to 1 for inverse transform and equal to -1 for
forward transform. The sum-of-product terms involving
coefficients with and without “s” are calculated separately and the
sign is changed in the final sum of product terms. The 16-pt and
32-pt unified transform architectures are similar to Figure 3.

Note that the final results of both forward and inverse transform
are rounded before being stored. This is not explicitly shown in the
figures but are included in hardware results in Section 3. The
rounding circuit is also shared between forward and inverse
transform.

3. HARDWARE RESULTS

The unified forward+inverse transform was implemented in RTL
for a throughput of one 32-pt 1D transform per cycle. A 32x32 2D
transform requires 64 cycles. Separate forward and inverse
transforms were also implemented. The implementations were
synthesized in 45-nm CMOS. Table 1 lists the area estimates (in
kgates) at 250 MHz for separate and unified implementations. The
unified implementation requires around 44% less area than
separate implementation. Hardware area savings at other
frequencies are provided in [7] and are in range of 43-45%.

Table 1: HEVC 32-pt 1D transform area estimate

Freq Fwd Inv
Separate
Fwd+Inv

Unified
Fwd+Inv

%Area
savings

250 148 130 278 156 44%

Table 2 provides the area breakdown of different components of
32-pt transform. N-pt transform implementation consists of three
main components: N/2-pt transform, Odd matrix multiplication
circuit and add-sub network. Hence smaller size transforms do not
need separate implementation leading to area savings.

Table 2: Area breakdown of different components in
32-pt transform
 % Area

Even4 0.2
Odd4 1.0

4-pt
AddSub
4 0.8

Odd8 5.7

8-pt

AddSub8 1.8
Odd16 16.9

16-pt

AddSub16 3.2
Odd32 54.0

32-pt

AddSub32 6.1
Mux, Demux, Rounding 10.3
Total 100

4. SUMMARY

HEVC uses multiple transform sizes to improve coding efficiency.
This however increases complexity. In this paper, it was shown
that symmetry properties of HEVC core transform enable hardware
sharing across different transform sizes and also between forward
and inverse transforms. Table 3 summarizes the hardware sharing
between forward and inverse transform that enabled an area
reduction of over 40%.

Table 3: Hardware sharing between forward and inverse
transform in HEVC
 Shared Not-shared
4-pt Even4 matrix mult (Eq. 3 & 7)

Odd4 Matrix mult (Eq. 5 & 8)
AddSub4 networks
(Eq. 2 & 9)

8-pt 4-pt matrix mult (Eq. 12 & 15)
Odd8 Matrix mult (Eq. 13 & 16)

AddSub8 networks
(Eq. 11 & 17)

16-pt
32-pt

Even and odd (Odd16, Odd32)
matrix mult

AddSub16,32
network

5. REFERENCES
[1] A. Fuldseth, G. Bjøntegaard, M. Budagavi, V. Sze, “CE10: Core
transform design for HEVC,” JCTVC-G495, Nov. 2011.
[2] A. Saxena, F. Fernandes, “Mode-dependent DCT/DST without 4*4 full
matrix multiplication for intra prediction," JCTVC-E125, Mar. 2011.
[3] H. S. Malvar et. al., “Low-Complexity Transform and Quantization
in H.264/AVC,” IEEE Trans. CSVT, July 2003.
[4] M. Sadafale, M. Budagavi, “Low-complexity configurable transform
architecture for HEVC,” JCTVC-C226, Oct. 2010.
[5] M. Tikekar, et. al., “Core Transform Property for Practical Throughput
Hardware Design,” JCTVC-G265, Nov. 2011.
[6] C.-Yu Hung, P. Landman, “Compact inverse discrete cosine transform
circuit for MPEG video decoding”, IEEE SIPS, pp.364-373, Nov. 1997.
[7] M. Budagavi, V. Sze, M. Sadafale,”Hardware analysis of transform and
quantization,” JCTVC-G132, Nov. 2011.

211

1

0

M

M

3

2

M

M

2

0

P

P

C16- C16

C16 C16

C24- C8-

C8 C24-

3

1

P

P

2

0

X

X

3

1

X

X

C16- C16

C16 C16

C24- C8-

C8 C24-

1

0

Y

Y

3

2

Y

Y

1

0

Z

Z

3

2

Z

Z

(a) (b)

Odd4

Odd4

Even4 Even4

1

0

M

M

3

2

M

M

2

0

P

P

C16- C16

C16 C16

C24- C8-

C8 C24-

3

1

P

P

2

0

X

X

3

1

X

X

C16- C16

C16 C16

C24- C8-

C8 C24-

1

0

Y

Y

3

2

Y

Y

1

0

Z

Z

3

2

Z

Z

(a) (b)

1

0

M

M

3

2

M

M

2

0

P

P

C16- C16

C16 C16

C24- C8-

C8 C24-

3

1

P

P

1

0

M

M

3

2

M

M

2

0

P

P

C16- C16

C16 C16

C24- C8-

C8 C24-

3

1

P

P

2

0

X

X

3

1

X

X

C16- C16

C16 C16

C24- C8-

C8 C24-

1

0

Y

Y

3

2

Y

Y

1

0

Z

Z

3

2

Z

Z

2

0

X

X

3

1

X

X

C16- C16

C16 C16

C16- C16

C16 C16

C24- C8-

C8 C24-

C24- C8-

C8 C24-

1

0

Y

Y

3

2

Y

Y

1

0

Z

Z

3

2

Z

Z

(a) (b)

Odd4

Odd4

Even4 Even4

Figure 1: (a) Forward transform architecture for 4-pt transform. (b) Inverse transform architecture for 4-pt transform.

1

0

M

M

3

2

M

M

2

0

X

X

3

1

X

X

2

0

P

P

3

1

P

P
C16- C16

C16 C16

C24- C8-

C8 C24- 1

0

Y

Y

3

2

Y

Y

1

0

Z

Z

3

2

Z

Z

inv_fwd_flag

inv_fwd_flag inv_fwd_flag

inv_fwd_flag

D
em

u
x

M
u
x

M
u
x

D
em

u
x

Even4

Odd4

AddSub4

AddSub4

1

0

M

M

3

2

M

M

2

0

X

X

3

1

X

X

2

0

P

P

3

1

P

P
C16- C16

C16 C16

C24- C8-

C8 C24- 1

0

Y

Y

3

2

Y

Y

1

0

Z

Z

3

2

Z

Z

inv_fwd_flag

inv_fwd_flag inv_fwd_flag

inv_fwd_flag

D
em

u
x

D
em

u
x

M
u
x

M
u
x

M
u
x

M
u
x

D
em

u
x

D
em

u
x

Even4

Odd4

AddSub4

AddSub4

Figure 2: Unified forward+inverse 4-pt transform with single set of input and output ports.

3

2

1

0

M

M

M

M

7

6

5

4

M

M

M

M

3

2

1

0

Z

Z

Z

Z

7

6

5

4

Z

Z

Z

Z
6

4

2

0

X

X

X

X

7

5

3

1

X

X

X

X

3

2

1

0

Y

Y

Y

Y

7

6

5

4

Y

Y

Y

Y

6

4

2

0

P

P

P

P

7

5

3

1

P

P

P

PUnified
forward+inverse

4-point

inv_fwd_flag

C28- C20s*- C12- C4s*-

C20s* C4 C18s* C12-

C12- C28s*- C4 C20s*-

C4s* C12- C20s* C28-

inv_fwd_flag

M
u
x

D
em

u
x

M
u
x

D
em

u
x

Odd8

AddSub8

AddSub8

3

2

1

0

M

M

M

M

7

6

5

4

M

M

M

M

3

2

1

0

Z

Z

Z

Z

7

6

5

4

Z

Z

Z

Z
6

4

2

0

X

X

X

X

7

5

3

1

X

X

X

X

3

2

1

0

Y

Y

Y

Y

7

6

5

4

Y

Y

Y

Y

6

4

2

0

P

P

P

P

7

5

3

1

P

P

P

PUnified
forward+inverse

4-point

inv_fwd_flag

C28- C20s*- C12- C4s*-

C20s* C4 C18s* C12-

C12- C28s*- C4 C20s*-

C4s* C12- C20s* C28-

inv_fwd_flag

M
u
x

M
u
x

D
em

u
x

D
em

u
x

M
u
x

M
u
x

D
em

u
x

D
em

u
x

Odd8

AddSub8

AddSub8

Figure 3: Unified forward+inverse 8-pt transform architecture.

212

