
HEVC ALF DECODE COMPLEXITY ANALYSIS AND REDUCTION

Madhukar Budagavi, Vivienne Sze, Minhua Zhou

{madhukar, sze, zhou}@ti.com

Texas Instruments Inc.

Dallas, TX – 75093, USA

ABSTRACT

This paper analyzes the decoder implementation complexity

of a new tool called Adaptive Loop Filtering (ALF) being

considered for the ITU-T/ISO/IEC High Efficiency Video

Coding (HEVC) standard, and proposes new luma filters

(Nx7 and Nx5) for ALF that reduce memory bandwidth,

memory size requirements, and number of computations.

The luma filters in ALF of the initial version HEVC Test

Model (HM-1.0) have a maximum vertical size of 9. The

vertical size of the ALF filters determines the memory size

(line buffers) and memory bandwidth requirements.

Accordingly, this paper proposes reducing the vertical size

of ALF filters to 7 and 5, which are referred to as Nx7 and

Nx5 filter sets respectively. These filters reduce memory

bandwidth and size requirements by 25% and 50%

respectively with minimal impact on coding efficiency. In

addition, the worst case computational complexity is

reduced by ~10% and ~20% respectively. Reduced vertical

size luma ALF filters are under consideration for inclusion

in HEVC standard with Nx7 being been adopted into HM-

2.0 and Nx5 being under consideration for HM-4.0.

Index Terms— HEVC, video coding, loop filter

1. INTRODUCTION

The Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T WP3/16 and ISO/IEC JTC 1/SC 29/WG 11 is

currently developing the next-generation video coding

standard referred to as High Efficiency Video Coding

(HEVC). HEVC is expected to provide around 50%

improvement in coding efficiency compared with

AVC/H.264. Furthermore, HEVC is intended for larger

resolutions and higher frame rates. In order to address these

requirements, HEVC utilizes larger “macroblocks”

compared to AVC/H.264. In HEVC, the largest coding unit

(LCU) can go up to 64x64, while in AVC/H.264 the

macroblock size is fixed to 16x16.

The larger resolution and higher frame rates also increase

the memory bandwidth of video codec implementations.

Memory bandwidth impacts both power and processing

speed. Frequent memory access significantly increases the

power consumption of a video codec. In particular, accesses

to large external/off-chip memory, such as a frame buffer,

account for a significant portion of the overall system power

of a video codec [1]. Low power consumption is critical for

future video codecs as video compression and

decompression is increasingly being done on mobile battery-

operated devices where power is limited. On-chip caching

can be used to reduce external memory bandwidth; however,

it comes at a cost of increased hardware area. Memory

bandwidth also impacts processing speed as the number of

ports available in a memory architecture, both on and off-

chip, is limited. Increasing memory bandwidth can result in

more read/write conflicts, which can cause stalls leading to

degradation in processing speed. This makes it more

challenging to deliver the desired high resolution and frame

rates.

In order to meet the power and performance requirements

for future video coding applications, it is necessary to

minimize the memory bandwidth demands of HEVC.

Several new tools proposed for HEVC provide improved

coding efficiency at a cost of increased memory bandwidth.

It is important to analyze these tools and develop methods of

reducing their memory bandwidth while maintaining the

coding efficiency benefits. The memory size requirements

should also be reduced to minimize area cost of on-chip

buffers.

This paper proposes methods of reducing memory

bandwidth, memory size requirements, and number of

computations of a new tool in HEVC called the adaptive

loop filtering (ALF). In the current ALF design in HEVC

Test Model (HM), a line buffer is needed to store previous

lines of the deblocked image to reduce memory bandwidth

requirements in ALF decode. The size of the line buffer is

determined by the vertical size of the filter. This paper

presents two ALF filter sets – Nx7 and Nx5 – with reduced

vertical size thereby reducing line buffer size and memory

bandwidth requirements and number of computations. The

paper will focus on the filters that are applied to the luma

components of video.

This paper is organized as follows: Section 2 provides an

overview of ALF filters. Section 3 discusses the

2011 18th IEEE International Conference on Image Processing

978-1-4577-1303-3/11/$26.00 ©2011 IEEE 733

implementation challenges of ALF used in HM-1.0,

particularly in terms of memory bandwidth and size

requirements. Section 4 describes the proposed new set of

filters for ALF. Section 5 presents the simulation results and

finally, Section 6 summarizes the benefits of the proposal

and describes the status of its adoption into the HEVC

standard.

2. OVERVIEW OF FILTERS IN ALF

Adaptive loop filtering (ALF) is a new coding tool that

has been introduced into HEVC. ALF is applied on the

output of the deblocking filter as shown in Figure 1. The

output of ALF is stored as the reference picture. The goal of

ALF is to reduce the distortion between the input picture and

the deblocked picture as shown in Figure 2. At the encoder,

the filter coefficients are estimated using traditional Wiener

filter estimation process by computing the auto-correlation

of deblocked picture and cross-correlation of the deblocked

picture and input picture.

Figure 1: Location of adaptive loop filtering in video

decoder. Dashed lines indicate memory storage units.

This paper focuses on reducing memory bandwidth of

the unit that stores deblocked pixels (highlighted in

yellow).

Figure 2: ALF filter estimation using Wiener filter.

ALF was first proposed to the ITU-T standards body in

[2][3] and had square filters. The ALF was carried out on

the entire deblocked picture. Subsequently, block-based

adaptive loop filtering was proposed where the ALF could

be enabled and disabled on a block (i.e. coding unit) basis

[4]. The encoder would signal to the decoder the map of

blocks of deblocked picture on which to apply ALF to

improve the reconstructed quality. A further refinement to

block-based adaptive loop filtering was the quadtree

adaptive loop filtering [5] which signaled the map of where

to apply ALF by using a quadtree. Diamond shaped ALF

filters were used in [6] for luma components to reduce

computation complexity.

The luma ALF in first version of the HEVC Test Model

(HM-1.0) is based on filter presented in [6] and uses three

diamond shaped filters of sizes 9, 7, 5 as shown in Figure 3

(the chroma filters in HM-1.0 have square kernels). The

filter size is allowed to change for each frame, but all filters

used within a frame have the same size. Up to 16 different

filters can be used for each frame. The set of filter

coefficients used for the ALF can also change for every

frame. Accordingly, the set of filter coefficients and filter

size are signaled at a frame level (i.e. 16 sets of coefficients

and filter size are sent to the decoder every frame). At the

decoder, a laplacian-based local activity is used to switch

between the different filters on a block-by-block basis.

The filters have 180-degree rotation symmetry as indicated

in the 9-diamond in Figure 3 where coefficients in similar

shaped boxes are equal. While only a few boxes have been

used in Figure 3 to illustrate the type of symmetry, all the

coefficients in the filter are in fact symmetric. As a result, a

filter of size N requires (N*N/4+1) multiplications. For size

9 filter, this translates to 21 multiplications. The number of

pixels that need to be read from memory to carry out one

filtering operation is 41.

Figure 3: HM-1.0 Luma ALF filter set. Symmetry in the

filters is highlighted using different shaped boxes.

3. ALF IMPLEMENTATION

In hardware and embedded software implementations of

video codecs, processing is typically done on a macroblock

[7]. For HEVC, this processing is expected to be done on

LCU basis. In LCU-based ALF, shown in Figure 4, filtering

is carried out on entire LCU before moving on to the next

LCU. The left part of Figure 4 shows ALF filtering of

LCU(0,0). The red lines show the deblocked pixel lines

(which is input to ALF filters) and the blue lines are the ALF

filtered output. Since the ALF filter is a non-causal filter and

uses right and bottom LCU data (which are not yet

available), not all deblocked pixels in an LCU can be ALF

filtered. In Figure 4, the LCU pixels that can be ALF filtered

when deblocked pixels for LCU are generated are shown in

solid blue line and the LCU pixels that cannot be filtered

when the deblocked pixels for LCU are generated are shown

in dotted blue lines. Accordingly, these unfiltered pixels at

the bottom of the LCU, which cannot be immediately

filtered, need to be stored. In order to reduce external

i
N

i

izabzH −
−

=

∑+=
1

0

0)(
Deblocking
filter output +

-

Input picture

)(ne

Video decoder loop
(intra prediction, motion compensation, inverse

transform, inverse quantization)

Deblocking
filter

Bit
stream

Storage of
deblocked
pixels

deblocked

picture
Adaptive
loop

filtering

9-Diamond 7-Diamond 5-Diamond

Reference

frame buffer

2011 18th IEEE International Conference on Image Processing

734

memory bandwidth, these pixels can be cached in an on-chip

line buffer. The unfiltered pixels (as shown on the left of

Figure 4) are written to the line buffer by the deblocking

filter; these pixels are then read from the line buffer by the

ALF when it processes the next LCU row (as shown on the

right of Figure 4).

Lines that need to

be cached

LCU(0,0) input to ALF

Output of ALF for LCU(0,0)

LCU(1,0) input to ALF

Output of ALF for LCU(1,0)

Figure 4: LCU-based ALF at the decoder with line

buffer cache. Red lines are the available deblocked

pixels for a given LCU. Solid blue lines are the pixels

that can be filtered immediately by the ALF, while the

dotted lines need to wait until other LCUs have been

deblocked, and therefore need to be cached.

For a filter with vertical size M, the previous M-1 lines need

to be cached in an on-chip line buffer to avoid incurring

additional off-chip memory bandwidth. Assuming a 4Kx2K

picture with maximum ALF filter size = 9 and 12-bit

intermediate pixel values, the line buffer memory size is: 4K

* 8 lines *12 bits = 48 Kbytes. Line buffers are also required

for other modules in the decoder (e.g. deblocking filter). The

data that needs to be stored for ALF accounts for ~50% of

the total line buffer memory required for HM-1.0 decoding.

Hence, it is important to reduce the line buffer requirements

for ALF in the decoder for ALF to be implemented cost-

effectively.

4. ALF FILTERS WITH REDUCED VERTICAL SIZE

For a given image size, the vertical size of ALF filters

determines the size of line buffer and memory bandwidth

requirements. These requirements can be reduced by

reducing the vertical size of ALF filter. This paper presents

two ALF filter sets that reduce the vertical size of the luma

filter. Figure 5 shows both these filter sets – Nx7 and Nx5.

Nx7 and Nx5 filter sets have maximum vertical size of 7 and

5 respectively. Since Nx7 operates on only 7 lines instead of

the original 9 line, the size of the line buffers goes down

from 8 lines to 6 lines. For Nx5, the size of line buffers goes

down to 4 lines. Table 1 provides a summary of the line

buffer size of different filters (and also the worst case

computations and BD-Rate performance). Nx7 reduces ALF

memory bandwidth and memory size requirements by 25%

whereas Nx5 reduces ALF memory bandwidth and memory

size requirements by 50%. In addition, Nx7 and Nx5 filter

sets reduce worst case number of multiplications by ~10%

and ~20% respectively when compared to HM-1.0 ALF

filters (See Table 1). Accordingly, the number of pixels that

need to be read from the line buffer to carry out one filtering

operation is also reduced (e.g. a 9x5 filter now only requires

33 reads instead of 41).

Figure 5: ALF filters with reduced vertical size.

5. SIMULATION RESULTS

Nx7 and Nx5 filter sets were integrated into HM-1.0 version

of the Test Model software being used in HEVC

standardization. Testing was carried under the common

conditions defined by JCT-VC in [8]. The common

conditions use 20 video sequences with different resolutions

from WQVGA (416x240) to 2560x1600. Most of the

sequences are of 10 seconds duration. There are three test

conditions: (a) Intra – where all frames are coded in Intra

mode, (b) Random access – where Hierarchical-B coding

structure with both forward and backward prediction is used,

and (c) Low delay – where only forward predicted frames

are used.

Table 1 shows the BD-Rate [9] savings of existing HM-1.0

ALF filter set, proposed Nx7 and Nx5 filter sets. Also shown

in the table are results when only HM-1.0 5x5 and 5x5/7x7

filters are used. It can be seen from Table 1 that the

proposed ALF filter sets capture most of the ALF coding

gains while reducing line buffer size, memory bandwidth

and worst case computations.

Nx7

Nx5

2011 18th IEEE International Conference on Image Processing

735

-3.8 -4.1 -3.3 196Nx7

-3.7 -4.0 -3.2 174Nx5

-3.3 -3.8 -3.1 136HM-1.0 7x7, 5x5

-3.0 -3.4 -2.6 74HM-1.0 5x5

-4.1 -4.1 -3.3 218HM-1.0 ALF

00No ALF

BD-RateBD-RateBD-Rate

Worst case

multiplies

Line buffer

size (lines)

Low delay

Random

accessIntra

Table 1: Summary of line buffer size, worst case multiplies, and

BD-Rate of ALF filters. All data compared to case of no ALF.

6. DISCUSSIONS AND CONCLUSIONS

This paper analyzes the implementation complexity of

adaptive loop filtering (ALF) for luma at the decoder.

Implementation complexity analysis involves not only

analysis of computations, but also analysis of memory

bandwidth and memory size (i.e. area cost of the on-chip

line buffer). Line buffers can be used to store previous lines

of deblocked picture to reduce external memory bandwidth.

In this work, we present two ALF filter sets – Nx7 and Nx5

– that reduce vertical size of filter thereby reducing the line

buffer size and memory bandwidth requirements. Nx7 has a

maximum vertical size of 7 and Nx5 has a maximum vertical

size of 5. Nx7 reduces ALF memory bandwidth and memory

size requirements by 25% whereas Nx5 reduces ALF

memory bandwidth and memory size requirements by 50%

when compared to HM-1.0 ALF filter set. In addition, Nx7

and Nx5 filter sets reduce worst case number of

multiplications by ~10% and ~20% respectively when

compared to HM-1.0 ALF filter set.

Existing ALF filters in HM-1.0 provide average BD-Rate

savings in range of 3.3% to 4.1%. Nx7 provides average

BD-Rate savings in the range of 3.3% to 4.1% where as Nx5

provides average BD-Rate savings in the range of 3.2% to

4%. Both the proposed ALF filter sets capture most of the

ALF coding gains.

Nx7 and Nx5 filters presented in this paper were proposed

to JCT-VC and decoder implementation complexity issues

of ALF (especially memory bandwidth and memory size

requirements) were highlighted in [10]. Reduced vertical

size luma ALF filters are now under consideration for

inclusion in HEVC standard. Nx7 filter set proposed in this

paper has been adopted into HM-2.0 as a first step [11]. Nx5

filter [12] in conjunction with cross-shaped filter of [13]

modified to have maximum vertical size of 5 [14] is under

consideration for inclusion in HM-4.0.

7. REFERENCES

[1] M. Budagavi, M. Zhou, “Video coding using

compressed reference frames,” IEEE ICASSP 2008.

[2] T. Chujoh, A. Tanizawa and T. Yamakage, “Adaptive

loop filter for Improving Coding Efficiency,” ITU-T

SG16 Contribution, C402, Geneva, April 2008.

[3] Yi-Jen Chiu and L. Xu, “Adaptive (Wiener) Filter for

Video Compression,” ITU-T SG16 Contribution, C437,

Geneva, April 2008.

[4] T. Chujoh, G. Yasuda, N. Wada, T. Watanabe and T.

Yamakage, “Block-based Adaptive loop filter,” ITU-T

SG16 Q.6 Document, VCEG-AI18, Berlin, July 2008.

[5] T. Chujoh, G. Yasuda, N. Wada, “Quadtree-based

adaptive loop filter,” ITU-T SG16 Contribution, C181,

January 2009.

[6] M. Karczewicz et. al., “A hybrid video coder based on

extended macroblock sizes, improved interpolation, and

flexible motion representation,” IEEE Trans. CSVT, pp.

1698-1708, Vol. 20, No. 12, Dec. 2010.

[7] T-D. Chuang et. al., “A 59.5mW Scalable/Multi-View

Video Decoder Chip for Quad/3D Full HDTV and

Video Streaming Applications,” IEEE ISSCC 2010.

[8] F. Bossen, “Common test conditions and software

reference configurations,” JCT-VC contribution,

JCTVC-C500, Guangzhou, CN, Oct. 2010.

[9] G. Bjøntegaard, “Calculation of average PSNR

differences between RD-Curves,” ITU-T SG16 Q.6

Document, VCEG-M33, Austin, April 2001.

[10] M. Budagavi, V. Sze, M. Zhou, “ALF decode

complexity analysis and reduction,” JCT-VC

contribution, JCTVC-D039, Daegu, KR, Jan. 2011.

[11] T. Wiegand et al., “WD2: Working Draft 2 of High-

Efficiency Video Coding,” JCT-VC contribution,

JCTVC-D503, Daegu, KR, Jan. 2011.

[12] M. Budagavi, V. Sze, M. Zhou, “CE8 Subtest 5: Luma

ALF with reduced vertical filter size,” JCT-VC

contribution, JCTVC-E060, Geneva, CH, Mar. 2011.

[13] F. Kossentini et al., “Adaptive Loop Filtering Using

Two Filter Shapes”, JCT-VC contribution, JCTVC-

E342, Geneva, CH, Mar. 2011.

[14] F. Kossentini et al., “CE8 Subset 5: Results on

combination of JCTVC-E342 + JCTVC-E060”, JCT-

VC contribution, JCTVC-E492, Geneva, CH, Mar.

2011.

2011 18th IEEE International Conference on Image Processing

736

